coxreg2 {eha} | R Documentation |
Cox regression
Description
Performs Cox regression with some special attractions, especially sampling of risksets and the weird bootstrap.
Usage
coxreg2(formula = formula(data), data = parent.frame(), weights,
subset, t.offset, na.action = getOption("na.action"), init = NULL, method =
c("efron", "breslow", "mppl", "ml"), control = list(eps = 1e-08, maxiter =
25, trace = FALSE), singular.ok = TRUE, model = FALSE, center = NULL, x =
FALSE, y = TRUE, hazards = NULL, boot = FALSE, efrac = 0, geometric = FALSE,
rs = NULL, frailty = NULL, max.survs = NULL, coxph = TRUE)
Arguments
formula |
a formula object, with the response on the left of a ~ operator, and the terms on the right. The response must be a survival object as returned by the Surv function. |
data |
a data.frame in which to interpret the variables named in the formula. |
weights |
Case weights; time-fixed or time-varying. |
subset |
An optional vector specifying a subset of observations to be used in the fitting process. |
t.offset |
Case offsets; time-varying. |
na.action |
a missing-data filter function, applied to the model.frame,
after any subset argument has been used. Default is
|
init |
vector of initial values of the iteration. Default initial value is zero for all variables. |
method |
Method of treating ties, "efron" (default), "breslow", "mppl" (maximum partial partial likelihood), or "ml" (maximum likelihood). |
control |
a list with components |
singular.ok |
Not used |
model |
Not used |
center |
deprecated. See Details. |
x |
Return the design matrix in the model object? |
y |
return the response in the model object? |
hazards |
deprecated. Was: Calculate baseline hazards? Default is TRUE. Calculating hazards is better done separately, after fitting. In most cases. |
boot |
Number of boot replicates. Defaults to FALSE, no boot samples. |
efrac |
Upper limit of fraction failures in 'mppl'. |
geometric |
If TRUE, forces an 'ml' model with constant riskset probability. Default is FALSE. |
rs |
Risk set? |
frailty |
Grouping variable for frailty analysis. Not in use (yet). |
max.survs |
Sampling of risk sets? If given, it should be (the upper limit of) the number of survivors in each risk set. |
coxph |
Logical, defaults to |
Details
The default method, efron
, and the alternative, breslow
, are
both the same as in coxph
in package
survival
. The methods mppl
and ml
are maximum
likelihood, discrete-model, based.
Value
A list of class c("coxreg", "coxph")
with components
coefficients |
Fitted parameter estimates. |
var |
Covariance matrix of the estimates. |
loglik |
Vector of length two; first component is the value at the initial parameter values, the second component is the maximized value. |
score |
The score test statistic (at the initial value). |
linear.predictors |
The estimated linear predictors. |
residuals |
The martingale residuals. |
hazards |
The estimated baseline hazards, calculated at the value zero of the covariates (rather, columns of the design matrix). Is a list, with one component per stratum. Each component is a matrix with two columns, the first contains risk times, the second the corresponding hazard atom. |
means |
Means of the columns of
the design matrix corresponding to covariates, if |
w.means |
Weighted (against exposure time) means of covariates; weighted relative frequencies of levels of factors. |
n |
Number of spells in indata (possibly after removal of cases with NA's). |
n.events |
Number of events in data. |
terms |
Used by extractor functions. |
assign |
Used by extractor functions. |
y |
The Surv vector. |
isF |
Logical vector indicating the covariates that are factors. |
covars |
The covariates. |
ttr |
Total Time at Risk. |
levels |
List of levels of factors. |
formula |
The calling formula. |
bootstrap |
The (matrix of) bootstrap replicates, if requested on input. It is up to the user to do whatever desirable with this sample. |
call |
The call. |
method |
The method. |
n.strata |
Number of strata. |
convergence |
Did the optimization converge? |
fail |
Did the optimization fail? (Is |
Warning
The use of rs
is dangerous, see note. It can
however speed up computing time considerably for huge data sets.
Note
This function starts by creating risksets, if no riskset is supplied
via rs
, with the aid of risksets
. Supplying output from
risksets
via rs
fails if there are any NA's in the data! Note
also that it depends on stratification, so rs
contains information
about stratification. Giving another strata variable in the formula is an
error. The same is ok, for instance to supply stratum interactions.
Author(s)
Göran Broström
References
Broström, G. and Lindkvist, M. (2008). Partial partial likelihood. Communications in Statistics: Simulation and Computation 37:4, 679-686.
See Also
Examples
dat <- data.frame(time= c(4, 3,1,1,2,2,3),
status=c(1,1,1,0,1,1,0),
x= c(0, 2,1,1,1,0,0),
sex= c(0, 0,0,0,1,1,1))
coxreg( Surv(time, status) ~ x + strata(sex), data = dat) #stratified model
# Same as:
rs <- risksets(Surv(dat$time, dat$status), strata = dat$sex)
coxreg( Surv(time, status) ~ x, data = dat, rs = rs) #stratified model