onefile_to_egor {egor} | R Documentation |
Import ego-centered network data from 'one file format'
Description
This function imports ego-centered network data, stored in a single file, providing ego, alter and edge data. This data format is used by the Allbus 2010 (GESIS) and similar social surveys.
Usage
onefile_to_egor(
egos,
netsize = NULL,
ID.vars = list(ego = "egoID"),
attr.start.col,
attr.end.col,
max.alters,
aa.first.var,
aa.regex = NULL,
var.wise = FALSE,
...
)
Arguments
egos |
|
netsize |
Numeric, network size values are used to filter out empty alter entries. If the alter data is not structured in a way, where valid alters are stored before the invalid alters, pass NULL here and filter out invalid alters afterwards. |
ID.vars |
Character. For onefile_to_egor only the name of the ego ID needs to be provided. |
attr.start.col |
Index or name of the first column containing alter attributes. |
attr.end.col |
Index or name of the last column containing alter attributes. |
max.alters |
Maximum number of alters. |
aa.first.var |
First column containing alter-alter relations/ edges. |
aa.regex |
A Perl regular expression with name capture,
intended to be run on column names and capturing via named
capture the following regex groups: |
var.wise |
Logical value indicating if the alter attributes are sorted variable wise (defaults to FALSE). |
... |
additional arguments to |
Value
An egor object is returned. It is a list
of three data frames:
(1) ego: dataframe
of all
egos and their attributes;
(2) alter: dataframe
of all alters;
(3) aatie: dataframe
of alter alter ties/ edges
References
Muller, C., Wellman, B., & Marin, A. (1999). How to Use SPSS to Study Ego-Centered Networks. Bulletin de Methodologie Sociologique, 64(1), 83-100.
Examples
path_to_one_file_8 <- system.file("extdata", "one_file_8.csv", package = "egor")
egos_8 <- read.csv2(path_to_one_file_8)
onefile_to_egor(
egos = egos_8, netsize = egos_8$netsize,
attr.start.col = "alter.sex.1",
attr.end.col = "alter.age.8",
aa.first.var = "X1.to.2",
max.alters = 8)