gelmansim {eeptools} | R Documentation |
Generate prediction intervals for model functions
Description
Generate prediction intervals from R models following Gelman and Hill
Usage
gelmansim(mod, newdata, n.sims, na.omit = TRUE)
Arguments
mod |
|
newdata |
Sets of new data to generate predictions for |
n.sims |
Number of simulations per case |
na.omit |
Logical indicating whether to remove NAs from |
Details
Currently gelmansim does not work for lm
objects because of the way sim
in the
arm
package handles variable names for these objects. It is recommended users use glm
in these cases.
Value
A dataframe with newdata and prediction intervals
References
Modified from Gelman and Hill 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
Examples
#Examples of "sim"
set.seed (1)
J <- 15
n <- J*(J+1)/2
group <- rep (1:J, 1:J)
mu.a <- 5
sigma.a <- 2
a <- rnorm (J, mu.a, sigma.a)
b <- -3
x <- rnorm (n, 2, 1)
sigma.y <- 6
y <- rnorm (n, a[group] + b*x, sigma.y)
u <- runif (J, 0, 3)
y123.dat <- cbind (y, x, group)
# Linear regression
x1 <- y123.dat[,2]
y1 <- y123.dat[,1]
M1 <- glm (y1 ~ x1)
cases <- data.frame(x1 = seq(-2, 2, by=0.1))
sim.results <- gelmansim(M1, newdata=cases, n.sims=200, na.omit=TRUE)
## Not run:
dat <- as.data.frame(y123.dat)
M2 <- glm (y1 ~ x1 + group, data=dat)
cases <- expand.grid(x1 = seq(-2, 2, by=0.1),
group=seq(1, 14, by=2))
sim.results <- gelmansim(M2, newdata=cases, n.sims=200, na.omit=TRUE)
## End(Not run)
[Package eeptools version 1.2.5 Index]