plotCueWeights {edl}  R Documentation 
Visualize the change of connection weights between a specific cue and all outcomes.
plotCueWeights( wmlist, cue, select.outcomes = NULL, init.value = 0, add.labels = TRUE, add = FALSE, ... )
wmlist 
A list with weightmatrices, generated by

cue 
String: cue for which to extract the connection weights. 
select.outcomes 
Optional selection of outcomes to limit the number
of connection weights that are returned. The value of NULL (default) will
return all connection weights. Note that specified values that are not in
the weightmatrices will return the initial value without error or warning.
Please use 
init.value 
Value of connection weights for nonexisting connections. Typically set to 0. 
add.labels 
Logical: whether or not to add labels for the lines. Defaults to TRUE, see examples. 
add 
Logical: whether or not to add the lines to an existing plot. Defaults to FALSE (starting a new plot). 
... 
Optional graphical arguments, as specified in

Optionally a list with label specifications is returned, which allows to plot your own labels. This may be helpful for very long labels, and for overlapping lines.
Jacolien van Rij
plotOutcomeWeights
, getWeightsByOutcome
,
getWeightsByCue
# load example data: data(dat) # add obligatory columns Cues, Outcomes, and Frequency: dat$Cues < paste("BG", dat$Shape, dat$Color, sep="_") dat$Outcomes < dat$Category dat$Frequency < dat$Frequency1 head(dat) dim(dat) # now use createTrainingData to sample from the specified frequencies: train < createTrainingData(dat) # this training data can actually be used train network: wm < RWlearning(train) # plot connection weights for cue = 'car': plotCueWeights(wm, cue="car") # plot your own labels: labels < plotCueWeights(wm, cue="car", add.labels=FALSE) legend_margin('topright', legend=labels$labels, col=labels$col, lwd=1, bty='n') # change color and select outcomes: out < getValues(train$Outcomes, unique=TRUE) out < out[out != "vehicle"] labels < plotCueWeights(wm, cue="car", add.labels=FALSE, col=alphaPalette(c(1,2), f.seq=rep(.5,length(out))), select.outcomes=out) lab2 < plotCueWeights(wm, cue="car", add.labels=FALSE, select.outcomes="vehicle", add=TRUE, col=1, lwd=2) legend_margin('topright', legend=c(labels$labels, "vehicle"), col=c(labels$col, lab2$col), lwd=c(labels$lwd, lab2$lwd), lty=c(labels$lty, lab2$lty))