createTrainingData {edl} | R Documentation |
Create event training data from a frequency data frame.
Description
Create event training data from a frequency data frame.
Usage
createTrainingData(
data,
nruns = 1,
random = TRUE,
within.runs = FALSE,
add.id = TRUE,
check = TRUE
)
Arguments
data |
Data frame with columns |
nruns |
Numeric: number of times to run through the data. |
random |
Logical: randomize the data or not (defaults to TRUE). |
within.runs |
Logical: apply setting of |
add.id |
Logical: whether or not to add columns that identify events
(default is TRUE). The column |
check |
Logical: check for empty strings ("") or not (defaults to TRUE). If empty strings are found, they will be removed. |
Value
data frame
Author(s)
Jacolien van Rij
Examples
# load example data:
data(dat)
# add obligatory columns Cues, Outcomes, and Frequency:
dat$Cues <- paste("BG", dat$Shape, dat$Color, sep="_")
dat$Outcomes <- dat$Category
dat$Frequency <- dat$Frequency1
head(dat)
dim(dat)
# now use createTrainingData to sample from the specified frequencies:
train <- createTrainingData(dat)
head(train)
dim(train)
# the rows should be equal to the sum of frequencies in dat:
sum(dat$Frequency)
# this training data can actually be used train network:
wm <- RWlearning(train)
# inspect weight matrix:
wm[[1]]
# retrieve cues and outcomes from data:
c <- getCues(wm)
o <- getOutcomes(wm)
# add missing cues to initial weight matrix:
checkWM(c, o, wm=wm[[1]])
# -------------------
# additional possibility for
# simulating experimental designs:
# -------------------
dat$Frequency <- dat$Frequency2
train2 <- createTrainingData(dat, nruns=5)
head(train2)
# items are completely randomized,
# and not equally distributed over the experiment:
train2$Run <- rep(1:5, each=(nrow(train2)/5))
table(train2$Run, train2$Item)
# in this way the items are randomized within each run:
train3 <- createTrainingData(dat, nruns=5, within.runs=TRUE)
head(train3)
table(train3$Run, train3$Item)
# difference in learning (may take some time):
## Not run:
wm2 <- RWlearning(train2)
plotCueWeights(wm2, cue="brown")
wm3 <- RWlearning(train3)
plotCueWeights(wm3, cue="brown")
plotOutcomeWeights(wm3, outcome="animal")
## End(Not run)