auto_edina {edina} | R Documentation |
Auto EDINA model selection routine
Description
Automatically select an appropriate K
dimension for a Q
matrix
under the Exploratory Deterministic Input, Noise And gate (EDINA) Model.
Usage
auto_edina(data, k = 2:4, burnin = 10000, chain_length = 20000)
Arguments
data |
Binary responses to assessments in |
k |
Number of Attribute Levels as a positive |
burnin |
Number of Observations to discard on the chain. |
chain_length |
Length of the MCMC chain |
Value
An auto_edina
object that contains:
-
edina_models
: A list containing all estimatededina
model objects. -
criterions
: Information criterions calculated for each model -
k_checked
: Varyingk
dimensions checked. -
j
: Number of Items
See Also
autoplot.auto_edina()
,
best_model()
,
model_selection_graph()
,
parameter_evolution_graph()
Examples
if(requireNamespace("simcdm", quietly = TRUE)) {
# Set a seed for reproducibility
set.seed(1512)
# Setup data simulation parameters
N = 15 # Number of Examinees / Subjects
J = 10 # Number of Items
K = 2 # Number of Skills / Attributes
# Note:
# Sample size and attributes have been reduced to create a minimally
# viable example that can be run during CRAN's automatic check.
# Please make sure to have a larger sample size...
# Assign slipping and guessing values for each item
ss = gs = rep(.2, J)
# Simulate an identifiable Q matrix
Q = simcdm::sim_q_matrix(J, K)
# Simulate subject attributes
subject_alphas = simcdm::sim_subject_attributes(N, K)
# Simulate items under the DINA model
items_dina = simcdm::sim_dina_items(subject_alphas, Q, ss, gs)
# Requires at least 15 seconds of execution time.
# Three EDINA models will be fit with increasing number of attributes.
model_set_edina = auto_edina(items_dina, k = 2:4)
# Display results
model_set_edina
# Retrieve criterion table
table = summary(model_set_edina)
# Extract "best model"
best_model(model_set_edina)
}
[Package edina version 0.1.1 Index]