ecospat.varpart {ecospat} | R Documentation |
Variation Partitioning For GLM Or GAM
Description
Perform variance partitioning for binomial GLM or GAM based on the deviance of two groups or predicting variables.
Usage
ecospat.varpart (model.1, model.2, model.12)
Arguments
model.1 |
GLM / GAM calibrated on the first group of variables. |
model.2 |
GLM / GAM calibrated on the second group of variables. |
model.12 |
GLM / GAM calibrated on all variables from the two groups. |
Details
The deviance is calculated with the adjusted geometric mean squared improvement rescaled for a maximum of 1.
Value
Return the four fractions of deviance as in Randin et al. 2009: partial deviance of model 1 and 2, joined deviance and unexplained deviance.
Author(s)
Christophe Randin christophe.randin@unibas.ch, Helene Jaccard and Nigel Gilles Yoccoz
References
Randin, C.F., H. Jaccard, P. Vittoz, N.G. Yoccoz and A. Guisan. 2009. Land use improves spatial predictions of mountain plant abundance but not presence-absence. Journal of Vegetation Science, 20, 996-1008.
Examples
if(require("rms",quietly=TRUE)){
data('ecospat.testData')
# data for Soldanella alpina and Achillea millefolium
data.Solalp<- ecospat.testData[c("Soldanella_alpina","ddeg","mind","srad","slp","topo")]
# glm models for Soldanella alpina
glm.Solalp1 <- glm("Soldanella_alpina ~ pol(ddeg,2) + pol(mind,2) + pol(srad,2)",
data = data.Solalp, family = binomial)
glm.Solalp2 <- glm("Soldanella_alpina ~ pol(slp,2) + pol(topo,2)",
data = data.Solalp, family = binomial)
ecospat.varpart (model.1= glm.Solalp1, model.2= glm.Solalp2, model.12= glm.Solalp2)
}