ecospat.binary.model {ecospat} | R Documentation |
Generate Binary Models
Description
Generate a binary map from a continuous model prediction.
Usage
ecospat.binary.model (Pred, Threshold)
Arguments
Pred |
a |
Threshold |
A threshold to convert continous maps into binary maps (e.g. the output of the function |
Details
This function generates a binary model prediction (presence/absence) from an original model applying a threshold. The threshold could be arbitrary, or be based on the maximum acceptable error of false negatives (i.e. percentage of the presence predicted as absences, omission error).
Value
The binary model prediction (presence/absence).
Author(s)
Ruben G. Mateo rubeng.mateo@gmail.com with contributions of Frank Breiner frank.breiner@wsl.ch and Flavien Collart
References
Fielding, A.H. and J.F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38-49.
Engler, R., A Guisan and L. Rechsteiner. 2004. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology, 41, 263-274.
Liu, C., Berry, P. M., Dawson, T. P. and R. G. Pearson. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.
Jimenez-Valverde, A. and J.M.Lobo. 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta oecologica, 31, 361-369.
Liu, C., White, M. and G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr., 40, 778-789.
Freeman, E.A. and G.G. Moisen. 2008. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling, 217, 48-58.
See Also
ecospat.mpa
, optimal.thresholds
Examples
library(terra)
# coordinates of the plots
xy <- ecospat.testData[,2:3]
# environmental data
predictors <- terra::rast(system.file("extdata","ecospat.testEnv.tif",package="ecospat"))
env <- terra::extract(predictors,xy,ID=FALSE)
spData <- cbind.data.frame(occ=ecospat.testData$Veronica_alpina,env)
mod <- glm(occ~ddeg0+I(ddeg0^2)+srad68+I(srad68^2),data=spData,family = binomial())
# predict to entire dataset
pred <- terra::predict(predictors,mod,type="response")
### make binary maps
# use MPA to convert suitability to binary map
mpa.cutoff <- ecospat.mpa(pred,xy[spData$occ==1,],perc = 0.9) # 90% presences encompassed
pred.bin.mpa <- ecospat.binary.model(pred,mpa.cutoff)
plot(pred.bin.mpa)
points(xy[spData$occ==1,])