ec_demcurve_cond_dem {echoice2}R Documentation

Create demand-incidence curves

Description

This helper function creates demand curves

Usage

ec_demcurve_cond_dem(
  ec_long,
  focal_product,
  rel_pricerange,
  dem_fun,
  draws,
  epsilon_not = NULL
)

Arguments

ec_long

choice scenario (discrete or volumetric)

focal_product

Logical vector picking the focal product for which to create a demand curve

rel_pricerange

Price range, relative to base case price; this is used to create demand curve

dem_fun

demand function (e.g., dd_prob for HMNL or vd_dem_vdm for volumetric demand). For discrete choice, use choice probabilities instead of choice predictions.

draws

ec-draws object (e.g., output from dd_est_hmnl or vd_est_vd)

epsilon_not

(optional) error realisatins (this helps make curves look smother for voumetric models)

Value

List containing aggregate demand quantities for each scenario defined by rel_pricerange

See Also

ec_gen_err_normal() to generate error realization from Normal distribution, ec_gen_err_ev1() to generate error realization from EV1 distribution

Examples


data(icecream)
#run MCMC sampler (use way more draws for actual use)
icecream_est <- icecream %>% dplyr::filter(id<20) %>% 
vd_est_vdm(R=2, keep=1, cores=2)
#demand at different price points
conddem_scenarios<-
ec_demcurve_cond_dem(icecream%>% dplyr::filter(id<20),
 icecream%>% dplyr::filter(id<20) %>% pull('Brand')=="Store",
 c(.75,1),vd_dem_vdm,icecream_est)



[Package echoice2 version 0.2.4 Index]