Choice Models with Economic Foundation


[Up] [Top]

Documentation for package ‘echoice2’ version 0.2.4

Help Pages

%.% Get the attribute of an object
dd_dem Discrete Choice Predictions (HMNL)
dd_dem_sr Discrete Choice Predictions (HMNL with attribute-based screening)
dd_est_hmnl Estimate discrete choice model (HMNL)
dd_est_hmnl_screen Estimate discrete choice model (HMNL, attribute-based screening (not including price))
dd_LL Log-Likelihood for compensatory hmnl model
dd_LL_sr Log-Likelihood for screening hmnl model
dummify Create dummy variables within a tibble
dummyvar Dummy-code a categorical variable
ec_boxplot_MU Generate MU_theta boxplot
ec_boxplot_screen Generate Screening probability boxplot
ec_demcurve Create demand curves
ec_demcurve_cond_dem Create demand-incidence curves
ec_demcurve_inci Create demand-incidence curves
ec_dem_aggregate Aggregate posterior draws of demand
ec_dem_eval Evaluate (hold-out) demand predictions
ec_dem_summarise Summarize posterior draws of demand
ec_dem_summarize Summarize posterior draws of demand
ec_draws_MU Obtain MU_theta draws
ec_draws_screen Obtain Screening probability draws
ec_estimates_MU Obtain upper level model estimates
ec_estimates_screen Summarize attribute-based screening parameters
ec_estimates_SIGMA Obtain posterior mean estimates of upper level covariance
ec_estimates_SIGMA_corr Obtain posterior mean estimates of upper level correlations
ec_gen_err_ev1 Simulate error realization from EV1 distribution
ec_gen_err_normal Simulate error realization from Normal distribution
ec_lmd_NR Obtain Log Marginal Density from draw objects
ec_lol_tidy1 Convert "list of lists" format to long "tidy" format
ec_screenprob_sr Screening probabilities of choice alternatives
ec_screen_summarise Summarize posterior draws of screening
ec_screen_summarize Summarize posterior draws of screening
ec_summarise_attrlvls Summarize attributes and levels
ec_summarize_attrlvls Summarize attributes and levels
ec_trace_MU Generate MU_theta traceplot
ec_trace_screen Generate Screening probability traceplots
ec_undummy Converts a set of dummy variables into a single categorical variable
ec_undummy_lowhigh Convert dummy-coded variables to low/high factor
ec_undummy_lowmediumhigh Convert dummy-coded variables to low/medium/high factor
ec_undummy_yesno Convert dummy-coded variables to yes/no factor
ec_util_choice_to_long Convert a vector of choices to long format
ec_util_dummy_mutualeclusive Find mutually exclusive columns
get_attr_lvl Obtain attributes and levels from tidy choice data with dummies
icecream icecream
icecream_discrete icecream_discrete
logMargDenNRu Log Marginal Density (Newton-Raftery)
pizza pizza
prep_newprediction Match factor levels between two datasets
vd_add_prodid Add product id to demand draws
vd_dem_summarise Summarize posterior draws of demand (volumetric models only)
vd_dem_summarize Summarize posterior draws of demand (volumetric models only)
vd_dem_vdm Demand Prediction (Volumetric Demand Model)
vd_dem_vdm_screen Demand Prediction (Volumetric demand, attribute-based screening)
vd_dem_vdm_ss Demand Prediction (Volumetric demand, accounting for set-size variation, EV1 errors)
vd_est_vdm Estimate volumetric demand model
vd_est_vdm_screen Estimate volumetric demand model with attribute-based conjunctive screening
vd_est_vdm_ss Estimate volumetric demand model accounting for set size variation (1st order)
vd_LL_vdm Log-Likelihood for compensatory volumetric demand model
vd_LL_vdmss Log-Likelihood for volumetric demand model with set-size variation
vd_LL_vdm_screen Log-Likelihood for conjunctive-screening volumetric demand model
vd_long_tidy Generate tidy choice data with dummies from long-format choice data
vd_prepare Prepare choice data for analysis
vd_prepare_nox Prepare choice data for analysis (without x being present)
vd_thin_draw Thin 'echoice2'-vd draw objects