ebnm_unimodal_symmetric {ebnm} | R Documentation |
Solve the EBNM problem using symmetric unimodal distributions
Description
Solves the empirical Bayes normal means (EBNM) problem using the family of
symmetric unimodal distributions. Identical to function ebnm
with argument prior_family = "unimodal_symmetric"
. For details
about the model, see ebnm
.
Usage
ebnm_unimodal_symmetric(
x,
s = 1,
mode = 0,
scale = "estimate",
g_init = NULL,
fix_g = FALSE,
output = ebnm_output_default(),
control = NULL,
...
)
Arguments
x |
A vector of observations. Missing observations ( |
s |
A vector of standard errors (or a scalar if all are equal). Standard errors may not be exactly zero, and missing standard errors are not allowed. |
mode |
A scalar specifying the mode of the prior |
scale |
The nonparametric family of symmetric unimodal distributions is approximated via a finite mixture of uniform distributions
where parameters |
g_init |
The prior distribution |
fix_g |
If |
output |
A character vector indicating which values are to be returned.
Function |
control |
A list of control parameters to be passed to optimization
function |
... |
Additional parameters to be passed to function
|
Value
An ebnm
object. Depending on the argument to output
, the
object is a list containing elements:
data
A data frame containing the observations
x
and standard errorss
.posterior
A data frame of summary results (posterior means, standard deviations, second moments, and local false sign rates).
fitted_g
The fitted prior
\hat{g}
.log_likelihood
The optimal log likelihood attained,
L(\hat{g})
.posterior_sampler
A function that can be used to produce samples from the posterior. The sampler takes a single parameter
nsamp
, the number of posterior samples to return per observation.
S3 methods coef
, confint
, fitted
, logLik
,
nobs
, plot
, predict
, print
, quantile
,
residuals
, simulate
, summary
, and vcov
have been implemented for ebnm
objects. For details, see the
respective help pages, linked below under See Also.
See Also
See ebnm
for examples of usage and model details.
Available S3 methods include coef.ebnm
,
confint.ebnm
,
fitted.ebnm
, logLik.ebnm
,
nobs.ebnm
, plot.ebnm
,
predict.ebnm
, print.ebnm
,
print.summary.ebnm
, quantile.ebnm
,
residuals.ebnm
, simulate.ebnm
,
summary.ebnm
, and vcov.ebnm
.