ebnm_scale_unimix {ebnm} | R Documentation |
Set scale parameter for nonparametric unimodal prior families
Description
The default method for setting the scale
parameter for functions
ebnm_unimodal
, ebnm_unimodal_symmetric
,
ebnm_unimodal_nonnegative
, and
ebnm_unimodal_nonpositive
.
Usage
ebnm_scale_unimix(
x,
s,
mode = 0,
min_K = 3,
max_K = 300,
KLdiv_target = 1/length(x)
)
Arguments
x |
A vector of observations. Missing observations ( |
s |
A vector of standard errors (or a scalar if all are equal). Standard errors may not be exactly zero, and missing standard errors are not allowed. |
mode |
A scalar specifying the mode of the prior |
min_K |
The minimum number of components |
max_K |
The maximum number of components |
KLdiv_target |
The desired bound
where
we have that
where |
References
Jason Willwerscheid (2021). Empirical Bayes Matrix Factorization: Methods and Applications. University of Chicago, PhD dissertation.