| extractData2 {eatGADS} | R Documentation |
Extract Data 2
Description
Extract data.frame from a GADSdat object for analyses in R. Per default, missing codes are applied but
value labels are dropped. Alternatively, value labels can be selectively applied via
labels2character, labels2factor, and labels2ordered.
For extracting meta data see extractMeta.
Usage
extractData2(
GADSdat,
convertMiss = TRUE,
labels2character = NULL,
labels2factor = NULL,
labels2ordered = NULL,
dropPartialLabels = TRUE
)
Arguments
GADSdat |
A |
convertMiss |
Should values tagged as missing values be recoded to |
labels2character |
For which variables should values be recoded to their labels? The resulting variables
are of type |
labels2factor |
For which variables should values be recoded to their labels? The resulting variables
are of type |
labels2ordered |
For which variables should values be recoded to their labels? The resulting variables
are of type |
dropPartialLabels |
Should value labels for partially labeled variables be dropped?
If |
Details
A GADSdat object includes actual data (GADSdat$dat) and the corresponding meta data information
(GADSdat$labels). extractData2 extracts the data and applies relevant meta data on value level
(missing conversion, value labels),
so the data can be used for analyses in R. Variable labels are retained as label attributes on column level.
If factor are extracted via labels2factor or labels2ordered, an attempt is made to preserve the underlying integers.
If this is not possible, a warning is issued.
As SPSS has almost no limitations regarding the underlying values of labeled
integers and R's factor format is very strict (no 0, only integers increasing by + 1),
this procedure can lead to frequent problems.
Value
Returns a data frame.
Examples
# Extract Data for Analysis
dat <- extractData2(pisa)
# convert only some variables to character, all others remain numeric
dat <- extractData2(pisa, labels2character = c("schtype", "ganztag"))
# convert only some variables to factor, all others remain numeric
dat <- extractData2(pisa, labels2factor = c("schtype", "ganztag"))
# convert all labeled variables to factors
dat <- extractData2(pisa, labels2factor = namesGADS(pisa))
# convert somme variables to factor, some to character
dat <- extractData2(pisa, labels2character = c("schtype", "ganztag"),
labels2factor = c("migration"))