logLik.dynrCook {dynr} | R Documentation |
Extract the log likelihood from a dynrCook Object
Description
Extract the log likelihood from a dynrCook Object
Usage
## S3 method for class 'dynrCook'
logLik(object, ...)
## S3 method for class 'dynrCook'
deviance(object, ...)
Arguments
object |
The dynrCook object for which the log likelihood is desired |
... |
further named arguments, ignored for this method |
Details
The 'df' attribute for this object is the number of freely estimated parameters. The 'nobs' attribute is the total number of rows of data, adding up the number of time points for each person.
The deviance
method returns minus two times the log likelihood.
Value
In the case of logLik
, an object of class logLik
.
See Also
Other S3 methods coef.dynrCook
Examples
# Minimal model
require(dynr)
meas <- prep.measurement(
values.load=matrix(c(1, 0), 1, 2),
params.load=matrix(c('fixed', 'fixed'), 1, 2),
state.names=c("Position","Velocity"),
obs.names=c("y1"))
ecov <- prep.noise(
values.latent=diag(c(0, 1), 2),
params.latent=diag(c('fixed', 'dnoise'), 2),
values.observed=diag(1.5, 1),
params.observed=diag('mnoise', 1))
initial <- prep.initial(
values.inistate=c(0, 1),
params.inistate=c('inipos', 'fixed'),
values.inicov=diag(1, 2),
params.inicov=diag('fixed', 2))
dynamics <- prep.matrixDynamics(
values.dyn=matrix(c(0, -0.1, 1, -0.2), 2, 2),
params.dyn=matrix(c('fixed', 'spring', 'fixed', 'friction'), 2, 2),
isContinuousTime=TRUE)
data(Oscillator)
data <- dynr.data(Oscillator, id="id", time="times", observed="y1")
model <- dynr.model(dynamics=dynamics, measurement=meas,
noise=ecov, initial=initial, data=data)
## Not run:
cook <- dynr.cook(model,
verbose=FALSE, optimization_flag=FALSE, hessian_flag=FALSE)
# Now get the log likelihood!
logLik(cook)
## End(Not run)
[Package dynr version 0.1.16-105 Index]