| loo.dynamitefit {dynamite} | R Documentation | 
Approximate Leave-One-Out (LOO) Cross-validation
Description
Estimates the leave-one-out (LOO) information criterion for dynamite
models using Pareto smoothed importance sampling with the loo package.
Usage
## S3 method for class 'dynamitefit'
loo(x, separate_channels = FALSE, thin = 1L, ...)
Arguments
| x | [ | 
| separate_channels | [ | 
| thin | [ | 
| ... | Ignored. | 
Value
An output from loo::loo() or a list of such outputs (if
separate_channels was TRUE).
References
Aki Vehtari, Andrew, Gelman, and Johah Gabry (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413–1432.
See Also
Model diagnostics
hmc_diagnostics(),
lfo(),
mcmc_diagnostics()
Examples
data.table::setDTthreads(1) # For CRAN
# Please update your rstan and StanHeaders installation before running
# on Windows
if (!identical(.Platform$OS.type, "windows")) {
  # this gives warnings due to the small number of iterations
  suppressWarnings(loo(gaussian_example_fit))
  suppressWarnings(loo(gaussian_example_fit, separate_channels = TRUE))
}