fitted.dynamitefit {dynamite} | R Documentation |
Extract Fitted Values of a Dynamite Model
Description
Fitted values for a dynamitefit
object, i.e.,
E(y_t | newdata, \theta)
where \theta
contains all the
model parameters. See also
predict.dynamitefit()
for multi-step predictions.
Usage
## S3 method for class 'dynamitefit'
fitted(
object,
newdata = NULL,
n_draws = NULL,
thin = 1,
expand = TRUE,
df = TRUE,
...
)
Arguments
object |
[ |
newdata |
[ |
n_draws |
[ |
thin |
[ |
expand |
[ |
df |
[ |
... |
Ignored. |
Value
A data.frame
containing the fitted values.
See Also
Obtaining predictions
predict.dynamitefit()
Examples
data.table::setDTthreads(1) # For CRAN
fitted(gaussian_example_fit, n_draws = 2L)
set.seed(1)
# Please update your rstan and StanHeaders installation before running
# on Windows
if (!identical(.Platform$OS.type, "windows")) {
fit <- dynamite(
dformula = obs(LakeHuron ~ 1, "gaussian") + lags(),
data = data.frame(LakeHuron, time = seq_len(length(LakeHuron)), id = 1),
time = "time",
group = "id",
chains = 1,
refresh = 0
)
if (requireNamespace("dplyr") &&
requireNamespace("tidyr") &&
base::getRversion() >= "4.1.0") {
# One-step ahead samples (fitted values) from the posterior
# (first time point is fixed due to lag in the model):
fitted(fit) |>
dplyr::filter(time > 2) |>
ggplot2::ggplot(ggplot2::aes(time, LakeHuron_fitted, group = .draw)) +
ggplot2::geom_line(alpha = 0.5) +
# observed values
ggplot2::geom_line(ggplot2::aes(y = LakeHuron), colour = "tomato") +
ggplot2::theme_bw()
# Posterior predictive distribution given the first time point:
predict(fit, type = "mean") |>
dplyr::filter(time > 2) |>
ggplot2::ggplot(ggplot2::aes(time, LakeHuron_mean, group = .draw)) +
ggplot2::geom_line(alpha = 0.5) +
# observed values
ggplot2::geom_line(ggplot2::aes(y = LakeHuron), colour = "tomato") +
ggplot2::theme_bw()
}
}