transmute.trackr_df {dtrackr} | R Documentation |
dplyr modifying operations
Description
Equivalent dplyr
functions for mutating, selecting and renaming a data set
act in the normal way. mutates / selects / rename generally don't add
anything in documentation so the default behaviour is to miss these out of
the history. This can be overridden with the .messages, or .headline values
in which case they behave just like a comment()
See dplyr::mutate()
,
dplyr::add_count()
, dplyr::add_tally()
, dplyr::transmute()
,
dplyr::select()
, dplyr::relocate()
, dplyr::rename()
dplyr::rename_with()
, dplyr::arrange()
for more details.
Usage
## S3 method for class 'trackr_df'
transmute(.data, ..., .messages = "", .headline = "", .tag = NULL)
Arguments
.data |
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details. |
... |
< The value can be:
|
.messages |
a set of glue specs. The glue code can use any global variable, grouping variable, {.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output column names, or {.strata}. Defaults to nothing. |
.headline |
a headline glue spec. The glue code can use any global variable, grouping variable, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing. |
.tag |
if you want the summary data from this step in the future then give it a name with .tag. |
Value
the .data dataframe after being modified by the dplyr
equivalent
function, but with the history graph updated with a new stage if the
.messages
or .headline
parameter is not empty.
See Also
dplyr::transmute()
Examples
library(dplyr)
library(dtrackr)
# mutate and other functions are unitary operations that generally change
# the structure but not size of a dataframe. In dtrackr these are by ignored
# by default but we can change that so that their behaviour is obvious.
# In this example we compare the column names of the input and the
# output to identify the new columns created by the transmute operation as
# the `.new_cols` variable
# Here we do the same for a transmute()
iris %>%
track() %>%
group_by(Species, .add=TRUE) %>%
transmute(
sepal.w = Sepal.Width-1,
sepal.l = Sepal.Length+1,
.messages="{.new_cols}",
.headline="New columns from transmute:") %>%
history()