p_slice_max {dtrackr} | R Documentation |
Slice operations
Description
Slice operations behave as in dplyr, except the history graph can be updated with
tracked dataframe with the before and after sizes of the dataframe.
See dplyr::slice()
, dplyr::slice_head()
, dplyr::slice_tail()
,
dplyr::slice_min()
, dplyr::slice_max()
, dplyr::slice_sample()
,
for more details on the underlying functions.
Usage
p_slice_max(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"
)
Arguments
.data |
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details. |
... |
Arguments passed on to
|
.messages |
a set of glue specs. The glue code can use any global variable, {.count.in}, {.count.out} for the input and output dataframes sizes respectively and {.excluded} for the difference |
.headline |
a glue spec. The glue code can use any global variable, {.count.in}, {.count.out} for the input and output dataframes sizes respectively. |
Value
the sliced dataframe with the history graph updated.
See Also
dplyr::slice_max()
Examples
library(dplyr)
library(dtrackr)
# Subset the data by the maximum of a given value
iris %>% track() %>% group_by(Species) %>%
slice_max(prop=0.5, order_by = Sepal.Width,
.messages="{.count.out} / {.count.in} = {prop} (with ties)",
.headline="Widest 50% Sepals") %>%
history()
# The narrowest 25% of the iris data set by group can be calculated in the
# slice_min() function. Recording this is a matter of tracking and
# using glue specs.
iris %>%
track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,
.messages="{.count.out} / {.count.in} (with ties)",
.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()