p_filter {dtrackr} | R Documentation |
Filtering data
Description
Filter acts in the same way as in dplyr
where predicates which evaluate to
TRUE act to select items to include, and items for which the predicate cannot
be evaluated are excluded. For tracking prior to the filter operation the
size of each group is calculated {.count.in} and after the operation the
output size of each group {.count.out}. The grouping {.strata} is also
available (if grouped) for reporting. See dplyr::filter()
.
Usage
p_filter(
.data,
...,
.messages = "excluded {.excluded} items",
.headline = .defaultHeadline(),
.type = "exclusion",
.asOffshoot = (.type == "exclusion"),
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL
)
Arguments
.data |
A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). See Methods, below, for more details. |
... |
Arguments passed on to
|
.messages |
a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and {.count.out} |
.headline |
a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and {.count.out} |
.type |
the format type of the action typically an exclusion |
.asOffshoot |
if the type is exclusion, |
.stage |
a name for this step in the pathway |
.tag |
if you want the summary data from this step in the future then
give it a name with |
Value
the filtered .data dataframe with history graph updated
See Also
dplyr::filter()
Examples
library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% filter(Petal.Length > 5) %>% history()