dti-package {dti} | R Documentation |
Analysis of Diffusion Weighted Imaging (DWI) Data
Description
Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.
Details
The DESCRIPTION file:
Package: | dti |
Version: | 1.5.4 |
Date: | 2023-09-06 |
Title: | Analysis of Diffusion Weighted Imaging (DWI) Data |
Authors@R: | c(person("Karsten", "Tabelow", role = c("aut", "cre"), email = "karsten.tabelow@wias-berlin.de"), person("Joerg", "Polzehl", role = c("aut"), email = "joerg.polzehl@wias-berlin.de"), person("Felix", "Anker", role = c("ctb"))) |
Author: | Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb] |
Maintainer: | Karsten Tabelow <karsten.tabelow@wias-berlin.de> |
Depends: | R (>= 3.5.0), awsMethods (>= 1.1-1) |
SystemRequirements: | gsl |
Imports: | methods, parallel, adimpro (>= 0.9), aws (>= 2.4.1), rgl, oro.nifti (>= 0.3.9), oro.dicom, gsl, quadprog |
LazyData: | TRUE |
Description: | Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D. |
License: | GPL (>= 2) |
Copyright: | This package is Copyright (C) 2005-2020 Weierstrass Institute for Applied Analysis and Stochastics. |
URL: | https://www.wias-berlin.de/research/ats/imaging/ |
Suggests: | covr |
RoxygenNote: | 6.1.0 |
Index of help topics:
AdjacencyMatrix Create an adjacency matrix from fiber tracking results awssigmc Estimate noise variance for multicoil MR systems colqFA FA map color scheme combineDWIdata Combine two objects of class "dtiData") dkiTensor-methods Diffusion Kurtosis Imaging (DKI) dti-package Analysis of Diffusion Weighted Imaging (DWI) Data dti.options Set and manipulate image orientations for plots. dti.smooth-methods Methods for Function 'dti.smooth' in Package 'dti' dtiIndices-methods Methods for Function 'dtiIndices' in Package 'dti' dtiTensor-methods Methods for Function 'dtiTensor' in Package 'dti' dwi-class Class "dwi" dwi.smooth-methods Smooth DWI data dwiMD Methods for Mean Diffusivity in Package 'dti' dwiMixtensor-methods Methods for Function 'dwiMixtensor' in Package 'dti' dwiQball-methods Methods for Function 'dwiQball' in Package 'dti' dwiRiceBias-methods Correction for Rician Bias dwiSqrtODF-methods Methods for positive definite EAP and ODF estimation in Package 'dti' extract-methods Methods for Function 'extract' and '[' in Package 'dti' getmask-methods Methods for Function 'getmask' in Package 'dti' getsdofsb-methods Estimate the noise standard deviation medinria Read/Write Diffusion Tensor Data from/to NIFTI File optgrad Optimal gradient directions optgradients Optimal gradient directions for number of gradients between 6 and 162 plot-methods Methods for Function 'plot' in Package 'dti' polyeder Polyeders derived from the Icosahedron (icosa0) by sequential triangulation of surface triangles print-methods Methods for Function 'print' in Package 'dti' readDWIdata Read Diffusion Weighted Data sdpar-methods Methods for Function 'sdpar' in Package 'dti' setmask-methods Methods for Function 'setmask' in Package 'dti' show-methods Methods for Function 'show' in Package 'dti' show3d-methods Methods for Function 'show3d' in Package 'dti' showFAColorScale Writes an image with the colqFA colorscale to disk. subsetg Create an objects of class "dtiData" containing only a subset of gradient directions. summary-methods Methods for Function 'summary' in Package 'dti' tracking-methods Methods for Function 'tracking' in Package 'dti'
Author(s)
Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb]
Maintainer: Karsten Tabelow <karsten.tabelow@wias-berlin.de>
References
J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.
S. Mohammadi, K. Tabelow, L. Ruthotto, Th. Feiweier, J. Polzehl, and N. Weiskopf, High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing, 8 (2015), 427.
S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, and J. Polzehl, Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS, NeuroImage 95 (2014), pp. 90-105.
S. Becker, K. Tabelow, H.U. Voss, A. Anwander, R.M. Heidemann and J. Polzehl, Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS), Medical Image Analysis, 16 (2012), pp. 1142-1155.
J. Polzehl and K. Tabelow, Beyond the diffusion tensor model: The package dti, Journal of Statistical Software, 44 no. 12 (2011) pp. 1-26.
K. Tabelow, H.U. Voss and J. Polzehl, Modeling the orientation distribution function by mixtures of angular central Gaussian distributions, Journal of Neuroscience Methods, 203 (2012), pp. 200-211.
J. Polzehl and K. Tabelow, Structural adaptive smoothing in diffusion tensor imaging: The R package dti, Journal of Statistical Software, 31 (2009) pp. 1–24.
K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. Diffusion Tensor Imaging: Structural adaptive smoothing, NeuroImage 39(4), 1763-1773 (2008).
See Also
Examples
## Not run: demo(dti_art)
## Not run: demo(mixtens_art)