| dti-package {dti} | R Documentation |
Analysis of Diffusion Weighted Imaging (DWI) Data
Description
Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.
Details
The DESCRIPTION file:
| Package: | dti |
| Version: | 1.5.4 |
| Date: | 2023-09-06 |
| Title: | Analysis of Diffusion Weighted Imaging (DWI) Data |
| Authors@R: | c(person("Karsten", "Tabelow", role = c("aut", "cre"), email = "karsten.tabelow@wias-berlin.de"), person("Joerg", "Polzehl", role = c("aut"), email = "joerg.polzehl@wias-berlin.de"), person("Felix", "Anker", role = c("ctb"))) |
| Author: | Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb] |
| Maintainer: | Karsten Tabelow <karsten.tabelow@wias-berlin.de> |
| Depends: | R (>= 3.5.0), awsMethods (>= 1.1-1) |
| SystemRequirements: | gsl |
| Imports: | methods, parallel, adimpro (>= 0.9), aws (>= 2.4.1), rgl, oro.nifti (>= 0.3.9), oro.dicom, gsl, quadprog |
| LazyData: | TRUE |
| Description: | Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D. |
| License: | GPL (>= 2) |
| Copyright: | This package is Copyright (C) 2005-2020 Weierstrass Institute for Applied Analysis and Stochastics. |
| URL: | https://www.wias-berlin.de/research/ats/imaging/ |
| Suggests: | covr |
| RoxygenNote: | 6.1.0 |
Index of help topics:
AdjacencyMatrix Create an adjacency matrix from fiber tracking
results
awssigmc Estimate noise variance for multicoil MR
systems
colqFA FA map color scheme
combineDWIdata Combine two objects of class "dtiData")
dkiTensor-methods Diffusion Kurtosis Imaging (DKI)
dti-package Analysis of Diffusion Weighted Imaging (DWI)
Data
dti.options Set and manipulate image orientations for
plots.
dti.smooth-methods Methods for Function 'dti.smooth' in Package
'dti'
dtiIndices-methods Methods for Function 'dtiIndices' in Package
'dti'
dtiTensor-methods Methods for Function 'dtiTensor' in Package
'dti'
dwi-class Class "dwi"
dwi.smooth-methods Smooth DWI data
dwiMD Methods for Mean Diffusivity in Package 'dti'
dwiMixtensor-methods Methods for Function 'dwiMixtensor' in Package
'dti'
dwiQball-methods Methods for Function 'dwiQball' in Package
'dti'
dwiRiceBias-methods Correction for Rician Bias
dwiSqrtODF-methods Methods for positive definite EAP and ODF
estimation in Package 'dti'
extract-methods Methods for Function 'extract' and '[' in
Package 'dti'
getmask-methods Methods for Function 'getmask' in Package 'dti'
getsdofsb-methods Estimate the noise standard deviation
medinria Read/Write Diffusion Tensor Data from/to NIFTI
File
optgrad Optimal gradient directions
optgradients Optimal gradient directions for number of
gradients between 6 and 162
plot-methods Methods for Function 'plot' in Package 'dti'
polyeder Polyeders derived from the Icosahedron (icosa0)
by sequential triangulation of surface
triangles
print-methods Methods for Function 'print' in Package 'dti'
readDWIdata Read Diffusion Weighted Data
sdpar-methods Methods for Function 'sdpar' in Package 'dti'
setmask-methods Methods for Function 'setmask' in Package 'dti'
show-methods Methods for Function 'show' in Package 'dti'
show3d-methods Methods for Function 'show3d' in Package 'dti'
showFAColorScale Writes an image with the colqFA colorscale to
disk.
subsetg Create an objects of class "dtiData" containing
only a subset of gradient directions.
summary-methods Methods for Function 'summary' in Package 'dti'
tracking-methods Methods for Function 'tracking' in Package
'dti'
Author(s)
Karsten Tabelow [aut, cre], Joerg Polzehl [aut], Felix Anker [ctb]
Maintainer: Karsten Tabelow <karsten.tabelow@wias-berlin.de>
References
J. Polzehl, K. Tabelow (2019). Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R. Springer, Use R! series. Doi:10.1007/978-3-030-29184-6.
S. Mohammadi, K. Tabelow, L. Ruthotto, Th. Feiweier, J. Polzehl, and N. Weiskopf, High-resolution diffusion kurtosis imaging at 3T enabled by advanced post-processing, 8 (2015), 427.
S. Becker, K. Tabelow, S. Mohammadi, N. Weiskopf, and J. Polzehl, Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS, NeuroImage 95 (2014), pp. 90-105.
S. Becker, K. Tabelow, H.U. Voss, A. Anwander, R.M. Heidemann and J. Polzehl, Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS), Medical Image Analysis, 16 (2012), pp. 1142-1155.
J. Polzehl and K. Tabelow, Beyond the diffusion tensor model: The package dti, Journal of Statistical Software, 44 no. 12 (2011) pp. 1-26.
K. Tabelow, H.U. Voss and J. Polzehl, Modeling the orientation distribution function by mixtures of angular central Gaussian distributions, Journal of Neuroscience Methods, 203 (2012), pp. 200-211.
J. Polzehl and K. Tabelow, Structural adaptive smoothing in diffusion tensor imaging: The R package dti, Journal of Statistical Software, 31 (2009) pp. 1–24.
K. Tabelow, J. Polzehl, V. Spokoiny and H.U. Voss. Diffusion Tensor Imaging: Structural adaptive smoothing, NeuroImage 39(4), 1763-1773 (2008).
See Also
Examples
## Not run: demo(dti_art)
## Not run: demo(mixtens_art)