estimateG_loop {drtmle} | R Documentation |
estimateG_loop
Description
Helper function to clean up internals of drtmle
function
Usage
estimateG_loop(validRows, A, W, DeltaA, DeltaY, tolg, verbose, stratify,
returnModels, SL_g, glm_g, a_0, Qn, adapt_g, use_future, se_cv = "none",
se_cvFolds = 10)
Arguments
validRows |
A |
A |
A vector of binary treatment assignment (assumed to be equal to 0 or 1) |
W |
A |
DeltaA |
Indicator of missing treatment (assumed to be equal to 0 if missing 1 if observed) |
DeltaY |
Indicator of missing outcome (assumed to be equal to 0 if missing 1 if observed) |
tolg |
A numeric indicating the minimum value for estimates of the propensity score. |
verbose |
A boolean indicating whether to print status updates. |
stratify |
A |
returnModels |
A boolean indicating whether to return model fits for the outcome regression, propensity score, and reduced-dimension regressions. |
SL_g |
A vector of characters describing the super learner library to be
used for each of the regression ( |
glm_g |
A character describing a formula to be used in the call to
|
a_0 |
A vector of fixed treatment values at which to return marginal mean estimates. |
Qn |
A |
adapt_g |
A boolean indicating whether propensity score is adaptive to outcome regression. |
use_future |
Should |
se_cv |
Should cross-validated nuisance parameter estimates be used
for computing standard errors?
Options are |
se_cvFolds |
If cross-validated nuisance parameter estimates are used
to compute standard errors, how many folds should be used in this computation.
If |