adaptive_iptw |
Compute asymptotically linear IPTW estimators with super learning for the propensity score |
average_est_cov_list |
Helper function for averaging lists of estimates generated in the main 'for' loop of 'drtmle' |
average_ic_list |
Helper function to average convergence results and drtmle influence function estimates over multiple fits |
ci |
Compute confidence intervals for drtmle and adaptive_iptw@ |
ci.adaptive_iptw |
Confidence intervals for adaptive_iptw objects |
ci.drtmle |
Confidence intervals for drtmle objects |
drtmle |
TMLE estimate of the average treatment effect with doubly-robust inference |
estimateG |
estimateG |
estimategrn |
estimategrn |
estimategrn_loop |
estimategrn_loop |
estimateG_loop |
estimateG_loop |
estimateQ |
estimateQ |
estimateQrn |
estimateQrn |
estimateQrn_loop |
estimateQrn_loop |
estimateQ_loop |
estimateQ_loop |
eval_Diptw |
Evaluate usual influence function of IPTW |
eval_Diptw_g |
Evaluate extra piece of the influence function for the IPTW |
eval_Dstar |
Evaluate usual efficient influence function |
eval_Dstar_g |
Evaluate extra piece of efficient influence function resulting from misspecification of outcome regression |
eval_Dstar_Q |
Evaluate extra piece of efficient influence function resulting from misspecification of propensity score |
extract_models |
Help function to extract models from fitted object |
fluctuateG |
fluctuateG |
fluctuateQ |
fluctuateQ |
fluctuateQ1 |
fluctuateQ1 |
fluctuateQ2 |
fluctuateQ2 |
make_validRows |
Make list of rows in each validation fold. |
partial_cv_preds |
Helper function to properly format partially cross-validated predictions from a fitted super learner. |
plot.drtmle |
Plot reduced dimension regression fits |
predict.SL.npreg |
Predict method for SL.npreg |
print.adaptive_iptw |
Print the output of a '"adaptive_iptw"' object. |
print.ci.adaptive_iptw |
Print the output of ci.adaptive_iptw |
print.ci.drtmle |
Print the output of ci.drtmle |
print.drtmle |
Print the output of a '"drtmle"' object. |
print.wald_test.adaptive_iptw |
Print the output of wald_test.adaptive_iptw |
print.wald_test.drtmle |
Print the output of wald_test.drtmle |
reorder_list |
Helper function to reorder lists according to cvFolds |
SL.npreg |
Super learner wrapper for kernel regression |
tmp_method.CC_LS |
Temporary fix for convex combination method mean squared error Relative to existing implementation, we reduce the tolerance at which we declare predictions from a given algorithm the same as another |
tmp_method.CC_nloglik |
Temporary fix for convex combination method negative log-likelihood loss Relative to existing implementation, we reduce the tolerance at which we declare predictions from a given algorithm the same as another. Note that because of the way 'SuperLearner' is structure, one needs to install the optimization software separately. |
wald_test |
Wald tests for drtmle and adaptive_iptw objects |
wald_test.adaptive_iptw |
Wald tests for adaptive_iptw objects |
wald_test.drtmle |
Wald tests for drtmle objects |