| W1.4 {drc} | R Documentation |
The four-parameter Weibull functions
Description
'W1.4' and 'W2.4' provide the four-parameter Weibull functions, self starter function and names of the parameters.
Usage
W1.4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"), ...)
W2.4(fixed = c(NA, NA, NA, NA), names = c("b", "c", "d", "e"), ...)
Arguments
fixed |
numeric vector. Specifies which parameters are fixed and at what value they are fixed. NAs for parameter that are not fixed. |
names |
a vector of character strings giving the names of the parameters. The default is reasonable. |
... |
additional arguments to be passed from the convenience functions. |
Details
The equations for the mean functions are given at weibull1.
Value
See weibull1.
Note
This function is for use with the model fitting function drm.
Author(s)
Christian Ritz
References
Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley \& Sons (pp. 330–331).
Ritz, C (2009) Towards a unified approach to dose-response modeling in ecotoxicology To appear in Environ Toxicol Chem.
See Also
Setting c=0 yields W1.3. A more flexible function, allowing
fixing or constraining parameters, is available through weibull1.
Examples
## Fitting a four-parameter Weibull (type 1) model
terbuthylazin.m1 <- drm(rgr~dose, data = terbuthylazin, fct = W1.4())
summary(terbuthylazin.m1)
## Fitting a first-order multistage model
## to data from BMDS by EPA
## (Figure 3 in Ritz (2009))
bmds.ex1 <- data.frame(ad.dose=c(0,50,100), dose=c(0, 2.83, 5.67),
num=c(6,10,19), total=c(50,49,50))
bmds.ex1.m1<-drm(num/total~dose, weights=total, data=bmds.ex1,
fct=W2.4(fixed=c(1,NA,1,NA)), type="binomial")
modelFit(bmds.ex1.m1) # same as in BMDS
summary(bmds.ex1.m1) # same background estimate as in BMDS
logLik(bmds.ex1.m1)
## BMD estimate identical to BMDS result
## BMDL estimate differs from BMDS result (different method)
ED(bmds.ex1.m1, 10, ci="delta")
## Better fit
bmds.ex1.m2<-drm(num/total~dose, weights=total, data=bmds.ex1,
fct=W1.4(fixed=c(-1,NA,1,NA)), type="binomial")
modelFit(bmds.ex1.m2)
summary(bmds.ex1.m2)
ED(bmds.ex1.m2, 50, ci = "delta")
## Creating Figure 3 in Ritz (2009)
bmds.ex1.m3 <- drm(num/total~dose, weights=total, data=bmds.ex1,
fct=LL.4(fixed=c(-1,NA,1,NA)), type="binomial")
plot(bmds.ex1.m1, ylim = c(0.05, 0.4), log = "", lty = 3, lwd = 2,
xlab = "Dose (mg/kg/day)", ylab = "",
cex=1.2, cex.axis=1.2, cex.lab=1.2)
mtext("Tumor incidence", 2, line=4, cex=1.2) # tailored y axis label
plot(bmds.ex1.m2, ylim = c(0.05, 0.4), log = "", add = TRUE, lty = 2, lwd = 2)
plot(bmds.ex1.m3, ylim = c(0.05, 0.4), log = "", add = TRUE, lty = 1, lwd = 2)
arrows(2.6 , 0.14, 2, 0.14, 0.15, lwd=2)
text(2.5, 0.14, "Weibull-1", pos=4, cex=1.2)