| if_else {dplyr} | R Documentation |
Vectorised if-else
Description
if_else() is a vectorized if-else. Compared to the base R equivalent,
ifelse(), this function allows you to handle missing values in the
condition with missing and always takes true, false, and missing
into account when determining what the output type should be.
Usage
if_else(condition, true, false, missing = NULL, ..., ptype = NULL, size = NULL)
Arguments
condition |
A logical vector |
true, false |
Vectors to use for Both
|
missing |
If not |
... |
These dots are for future extensions and must be empty. |
ptype |
An optional prototype declaring the desired output type. If
supplied, this overrides the common type of |
size |
An optional size declaring the desired output size. If supplied,
this overrides the size of |
Value
A vector with the same size as condition and the same type as the common
type of true, false, and missing.
Where condition is TRUE, the matching values from true, where it is
FALSE, the matching values from false, and where it is NA, the matching
values from missing, if provided, otherwise a missing value will be used.
Examples
x <- c(-5:5, NA)
if_else(x < 0, NA, x)
# Explicitly handle `NA` values in the `condition` with `missing`
if_else(x < 0, "negative", "positive", missing = "missing")
# Unlike `ifelse()`, `if_else()` preserves types
x <- factor(sample(letters[1:5], 10, replace = TRUE))
ifelse(x %in% c("a", "b", "c"), x, NA)
if_else(x %in% c("a", "b", "c"), x, NA)
# `if_else()` is often useful for creating new columns inside of `mutate()`
starwars %>%
mutate(category = if_else(height < 100, "short", "tall"), .keep = "used")