wavelet.plot {dplR} | R Documentation |
Plot a Continuous Wavelet Transform
Description
This function creates a filled.contour
plot of a continuous
wavelet transform as output from morlet
.
Usage
wavelet.plot(wave.list,
wavelet.levels = quantile(wave.list$Power,
probs = (0:10)/10),
add.coi = TRUE, add.sig = TRUE,
x.lab = gettext("Time", domain = "R-dplR"),
period.lab = gettext("Period", domain = "R-dplR"),
crn.lab = gettext("RWI", domain = "R-dplR"),
key.cols = rev(rainbow(length(wavelet.levels)-1)),
key.lab = parse(text=paste0("\"",
gettext("Power",
domain="R-dplR"),
"\"^2")),
add.spline = FALSE, f = 0.5, nyrs = NULL,
crn.col = "black", crn.lwd = 1,coi.col='black',
crn.ylim = range(wave.list$y) * c(0.95, 1.05),
side.by.side = FALSE,
useRaster = FALSE, res = 150, reverse.y = FALSE, ...)
Arguments
wave.list |
A |
wavelet.levels |
A |
add.coi |
A |
add.sig |
A |
x.lab |
X-axis label. |
period.lab |
Y-axis label for the wavelet plot. |
crn.lab |
Y-axis label for the time-series plot. |
key.cols |
A vector of colors for the wavelets and the key. |
key.lab |
Label for key. |
add.spline |
A |
nyrs |
A number giving the rigidity of the smoothing spline,
defaults to 0.33 of series length if |
f |
A number between 0 and 1 giving the frequency response or wavelength cutoff for the smoothing spline. Defaults to 0.5. |
crn.col |
Line color for the time-series plot. |
crn.lwd |
Line width for the time-series plot. |
coi.col |
Color for the COI if |
crn.ylim |
Axis limits for the time-series plot. |
side.by.side |
A |
useRaster |
A |
res |
A |
reverse.y |
A |
... |
Arguments passed to |
Details
This produces a plot of a continuous wavelet transform and plots the original time series. Contours are added for significance and a cone of influence polygon can be added as well. Anything within the cone of influence should not be interpreted.
The time series can be plotted with a smoothing spline as well.
Value
None. This function is invoked for its side effect, which is to produce a plot.
Note
The function morlet
is a port of Torrence’s
IDL code, which can be accessed through the
Internet Archive Wayback Machine.
Author(s)
Andy Bunn. Patched and improved by Mikko Korpela.
References
Torrence, C. and Compo, G. P. (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.
See Also
Examples
library(stats)
library(utils)
data(ca533)
ca533.rwi <- detrend(rwl = ca533, method = "ModNegExp")
ca533.crn <- chron(ca533.rwi, prewhiten = FALSE)
Years <- time(ca533.crn)
CAMstd <- ca533.crn[, 1]
out.wave <- morlet(y1 = CAMstd, x1 = Years, p2 = 9, dj = 0.1,
siglvl = 0.99)
wavelet.plot(out.wave, useRaster = NA)
## Not run:
# Alternative palette with better separation of colors
# via: rev(RColorBrewer::brewer.pal(10, "Spectral"))
specCols <- c("#5E4FA2", "#3288BD", "#66C2A5", "#ABDDA4", "#E6F598",
"#FEE08B", "#FDAE61", "#F46D43", "#D53E4F", "#9E0142")
wavelet.plot(out.wave, key.cols=specCols,useRaster = NA)
# fewer colors
levs <- quantile(out.wave$Power, probs = c(0, 0.5, 0.75, 0.9, 0.99))
wavelet.plot(out.wave, wavelet.levels = levs, add.sig = FALSE,
key.cols = c("#FFFFFF", "#ABDDA4", "#FDAE61", "#D7191C"), useRaster = NA)
## End(Not run)