| waldtest {dosresmeta} | R Documentation |
Wald Test for Model Coefficients
Description
Computes a Wald chi-squared test for 1 or more coefficients, given their variance-covariance matrix.
Usage
waldtest(Sigma, b, Terms = NULL, L = NULL, H0 = NULL)
## S3 method for class 'waldtest'
print(x, digits = 2, ...)
Arguments
Sigma |
a var-cov matrix, usually extracted from one of the fitting functions. |
b |
a vector of coefficients with var-cov matrix |
Terms |
an optional integer vector specifying which coefficients should be jointly tested, using a Wald
chi-squared or F test. Its elements correspond to the columns or rows of the var-cov matrix given in |
L |
an optional matrix conformable to |
H0 |
a numeric vector giving the null hypothesis for the test. It must be as long as |
x |
Object of class "waldtest". |
digits |
number of decimal places for displaying test results. Default to 2. |
... |
further arguments passed to or from other methods. |
Details
The waldtest and the method print.waldtest are taken from the aod package and
simplified for ease of use.
Value
An object of class waldtest, printed with print.waldtest.
Author(s)
Alessio Crippa, alessio.crippa@ki.se
See Also
aod, summary.dosresmeta
Examples
## Load data and run the model
data("alcohol_cvd")
model <- dosresmeta(formula = logrr ~ dose + I(dose^2), type = type, id = id,
se = se, cases = cases, n = n, data = alcohol_cvd)
## Test for significance of the overall dose-response association
waldtest(b = coef(model), Sigma = vcov(model), Terms = 1:nrow(vcov(model)))