external_validity {diceR} | R Documentation |
External validity indices
Description
External validity indices compare a predicted clustering result with a reference class or gold standard.
Usage
ev_nmi(pred.lab, ref.lab, method = "emp")
ev_confmat(pred.lab, ref.lab)
Arguments
pred.lab |
predicted labels generated by classifier |
ref.lab |
reference labels for the observations |
method |
method of computing the entropy. Can be any one of "emp", "mm", "shrink", or "sg". |
Details
ev_nmi
calculates the normalized mutual information
ev_confmat
calculates a variety of statistics associated with
confusion matrices. Accuracy, Cohen's kappa, and Matthews correlation
coefficient have direct multiclass definitions, whereas all other
metrics use macro-averaging.
Value
ev_nmi
returns the normalized mutual information.
ev_confmat
returns a tibble of the following summary statistics using yardstick::summary.conf_mat()
:
-
accuracy
: Accuracy -
kap
: Cohen's kappa -
sens
: Sensitivity -
spec
: Specificity -
ppv
: Positive predictive value -
npv
: Negative predictive value -
mcc
: Matthews correlation coefficient -
j_index
: Youden's J statistic -
bal_accuracy
: Balanced accuracy -
detection_prevalence
: Detection prevalence -
precision
: alias forppv
-
recall
: alias forsens
-
f_meas
: F Measure
Note
ev_nmi
is adapted from infotheo::mutinformation()
Author(s)
Johnson Liu, Derek Chiu
References
Strehl A, Ghosh J. Cluster ensembles: a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 2002;3:583-617.
Examples
set.seed(1)
E <- matrix(rep(sample(1:4, 1000, replace = TRUE)), nrow = 100, byrow =
FALSE)
x <- sample(1:4, 100, replace = TRUE)
y <- sample(1:4, 100, replace = TRUE)
ev_nmi(x, y)
ev_confmat(x, y)