CSPA {diceR} | R Documentation |
Cluster-based Similarity Partitioning Algorithm (CSPA)
Description
Performs hierarchical clustering on a stack of consensus matrices to obtain consensus class labels.
Usage
CSPA(E, k)
Arguments
E |
is an array of clustering results. |
k |
number of clusters |
Value
cluster assignments for the consensus class
Author(s)
Derek Chiu
References
Strehl, A., & Ghosh, J. (2002). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of machine learning research, 3(Dec), 583-617.
See Also
Other consensus functions:
LCA()
,
LCE()
,
k_modes()
,
majority_voting()
Examples
data(hgsc)
dat <- hgsc[1:100, 1:50]
x <- consensus_cluster(dat, nk = 4, reps = 4, algorithms = c("hc", "diana"),
progress = FALSE)
CSPA(x, k = 4)
[Package diceR version 2.2.0 Index]