ontram {deeptrafo} | R Documentation |
Ordinal neural network transformation models
Description
Ordinal neural network transformation models
Usage
ontram(
response,
intercept = NULL,
shift = NULL,
shared = NULL,
data,
response_type = "ordered",
order = get_order(response_type, data[[all.vars(response)[1]]]),
addconst_interaction = 0,
latent_distr = "logistic",
monitor_metrics = NULL,
trafo_options = trafo_control(order_bsp = order, response_type = response_type),
...
)
Arguments
response |
Formula for the response; e.g., |
intercept |
Formula for the intercept function; e.g., |
shift |
Formula for the shift part of the model; e.g., |
shared |
Formula for sharing weights between predictors in the intercept and shift part of the model |
data |
Named |
response_type |
Character; type of response. One of |
order |
Integer; order of the response basis. Default 10 for Bernstein basis or number of levels minus one for ordinal responses. |
addconst_interaction |
Positive constant;
a constant added to the additive predictor of the interaction term.
If |
latent_distr |
A |
monitor_metrics |
See |
trafo_options |
Options for transformation models such as the basis
function used, see |
... |
Additional arguments passed to |
Value
See return statement of deeptrafo
References
Kook, L. & Herzog, L., Hothorn, T., Dürr, O., & Sick, B. (2022). Deep and interpretable regression models for ordinal outcomes. Pattern Recognition, 122, 108263. DOI 10.1016/j.patcog.2021.108263
Examples
df <- data.frame(y = ordered(sample.int(6, 50, TRUE)), x = rnorm(50))
if (reticulate::py_module_available("tensorflow") &
reticulate::py_module_available("keras") &
reticulate::py_module_available("tensorflow_probability")) {
m <- ontram(response = ~ y, shift = ~ x, data = df)
coef(m)
}