PolrNN {deeptrafo} | R Documentation |
Deep (proportional odds) logistic regression
Description
Deep (proportional odds) logistic regression
Usage
PolrNN(
formula,
data,
response_type = get_response_type(data[[all.vars(formula)[1]]]),
order = get_order(response_type, data[[all.vars(formula)[1]]]),
addconst_interaction = 0,
latent_distr = "logistic",
monitor_metrics = NULL,
trafo_options = trafo_control(order_bsp = order, response_type = response_type),
...
)
Arguments
formula |
Formula specifying the response, interaction, shift terms
as |
data |
Named |
response_type |
Character; type of response. One of |
order |
Integer; order of the response basis. Default 10 for Bernstein basis or number of levels minus one for ordinal responses. |
addconst_interaction |
Positive constant;
a constant added to the additive predictor of the interaction term.
If |
latent_distr |
A |
monitor_metrics |
See |
trafo_options |
Options for transformation models such as the basis
function used, see |
... |
Additional arguments passed to |
Value
See return statement of deeptrafo
Examples
df <- data.frame(y = ordered(sample.int(5, 50, replace = TRUE)),
x = rnorm(50))
if (reticulate::py_module_available("tensorflow") &
reticulate::py_module_available("keras") &
reticulate::py_module_available("tensorflow_probability")) {
m <- PolrNN(y ~ x, data = df)
coef(m)
}