| LehmanNN {deeptrafo} | R Documentation | 
Lehmann-type neural network transformation models
Description
Lehmann-type neural network transformation models
Usage
LehmanNN(
  formula,
  data,
  response_type = get_response_type(data[[all.vars(formula)[1]]]),
  order = get_order(response_type, data[[all.vars(formula)[1]]]),
  addconst_interaction = 0,
  latent_distr = "gumbel",
  monitor_metrics = NULL,
  trafo_options = trafo_control(order_bsp = order, response_type = response_type),
  ...
)
Arguments
| formula | Formula specifying the response, interaction, shift terms
as  | 
| data | Named  | 
| response_type | Character; type of response. One of  | 
| order | Integer; order of the response basis. Default 10 for Bernstein basis or number of levels minus one for ordinal responses. | 
| addconst_interaction | Positive constant;
a constant added to the additive predictor of the interaction term.
If  | 
| latent_distr | A  | 
| monitor_metrics | See  | 
| trafo_options | Options for transformation models such as the basis
function used, see  | 
| ... | Additional arguments passed to  | 
Value
See return statement of deeptrafo
Examples
df <- data.frame(y = rnorm(50), x = rnorm(50))
if (reticulate::py_module_available("tensorflow") &
    reticulate::py_module_available("keras") &
    reticulate::py_module_available("tensorflow_probability")) {
    m <- LehmanNN(y ~ 0 + x, data = df)
    coef(m)
}