model_sbmsupereff {deaR} | R Documentation |
Slack based measure of superefficiency model
Description
Slack based measure of superefficiency model (Tone 2002) with n
DMUs, m
inputs and s
outputs.
Usage
model_sbmsupereff(datadea,
dmu_eval = NULL,
dmu_ref = NULL,
weight_input = 1,
weight_output = 1,
orientation = c("no", "io", "oo"),
rts = c("crs", "vrs", "nirs", "ndrs", "grs"),
L = 1,
U = 1,
compute_target = TRUE,
compute_rho = FALSE,
kaizen = FALSE,
silent = FALSE,
returnlp = FALSE)
Arguments
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
weight_input |
A value, vector of length |
weight_output |
A value, vector of length |
orientation |
A string, equal to "no" (non-oriented), "io" (input-oriented) or "oo" (output-oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
compute_target |
Logical. If it is |
compute_rho |
Logical. If it is |
kaizen |
Logical. If |
silent |
Logical. If |
returnlp |
Logical. If it is |
Author(s)
Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós (vicente.bolos@uv.es). Department of Business Mathematics
Rafael Benítez (rafael.suarez@uv.es). Department of Business Mathematics
University of Valencia (Spain)
References
Tone, K. (2002). "A slacks-based measure of super-efficiency in data envelopment analysis", European Journal of Operational Research, 143, 32-41. doi:10.1016/S0377-2217(01)00324-1
Tone, K. (2010). "Variations on the theme of slacks-based measure of efficiency in DEA", European Journal of Operational Research, 200, 901-907. doi:10.1016/j.ejor.2009.01.027
Cooper, W.W.; Seiford, L.M.; Tone, K. (2007). Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software. 2nd Edition. Springer, New York. doi:10.1007/978-0-387-45283-8
See Also
model_sbmeff
, model_supereff
,
model_addsupereff
Examples
# Replication of results in Tone(2002, p.39)
data("Power_plants")
data_example <- make_deadata(Power_plants,
ni = 4,
no = 2)
result <- model_sbmsupereff(data_example,
orientation = "io",
rts = "crs")
efficiencies(result)
slacks(result)$slack_input
references(result)