model_additive {deaR} | R Documentation |
Additive DEA model.
Description
Solve the additive model of Charnes et. al (1985). With the current version of deaR, it is possible to solve input-oriented, output-oriented, and non-oriented additive model under constant and non-constant returns to scale.
Besides, the user can set weights for the input slacks and/or output slacks. So, it is also possible to solve weighted additive models. For example: Measure of Inefficiency Proportions (MIP), Range Adjusted Measure (RAM), etc.
Usage
model_additive(datadea,
dmu_eval = NULL,
dmu_ref = NULL,
orientation = NULL,
weight_slack_i = 1,
weight_slack_o = 1,
rts = c("crs", "vrs", "nirs", "ndrs", "grs"),
L = 1,
U = 1,
compute_target = TRUE,
returnlp = FALSE,
...)
Arguments
datadea |
A |
dmu_eval |
A numeric vector containing which DMUs have to be evaluated.
If |
dmu_ref |
A numeric vector containing which DMUs are the evaluation reference set.
If |
orientation |
This parameter is either |
weight_slack_i |
A value, vector of length |
weight_slack_o |
A value, vector of length |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
compute_target |
Logical. If it is |
returnlp |
Logical. If it is |
... |
Ignored, for compatibility issues. |
Note
In this model, the efficiency score is the sum of the slacks. Therefore,
a DMU is efficient when the objective value (objval
) is zero.
Author(s)
Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós (vicente.bolos@uv.es). Department of Business Mathematics
Rafael Benítez (rafael.suarez@uv.es). Department of Business Mathematics
University of Valencia (Spain)
References
Charnes, A.; Cooper, W.W.; Golany, B.; Seiford, L.; Stuz, J. (1985) "Foundations of Data Envelopment Analysis for Pareto-Koopmans Efficient Empirical Production Functions", Journal of Econometrics, 30(1-2), 91-107. doi:10.1016/0304-4076(85)90133-2
Charnes, A.; Cooper, W.W.; Lewin, A.Y.; Seiford, L.M. (1994). Data Envelopment Analysis: Theory, Methology, and Application. Boston: Kluwer Academic Publishers. doi:10.1007/978-94-011-0637-5
Cooper, W.W.; Park, K.S.; Pastor, J.T. (1999). "RAM: A Range Adjusted Measure of Inefficiencies for Use with Additive Models, and Relations to Other Models and Measures in DEA". Journal of Productivity Analysis, 11, p. 5-42. doi:10.1023/A:1007701304281
See Also
Examples
# Example 1.
# Replication of results in Charnes et. al (1994, p. 27)
x <- c(2, 3, 6, 9, 5, 4, 10)
y <- c(2, 5, 7, 8, 3, 1, 7)
data_example <- data.frame(dmus = letters[1:7], x, y)
data_example <- make_deadata(data_example,
ni = 1,
no = 1)
result <- model_additive(data_example,
rts = "vrs")
efficiencies(result)
slacks(result)
lambdas(result)
# Example 2.
# Measure of Inefficiency Proportions (MIP).
x <- c(2, 3, 6, 9, 5, 4, 10)
y <- c(2, 5, 7, 8, 3, 1, 7)
data_example <- data.frame(dmus = letters[1:7], x, y)
data_example <- make_deadata(data_example,
ni = 1,
no = 1)
result2 <- model_additive(data_example,
rts = "vrs",
weight_slack_i = 1 / data_example[["input"]],
weight_slack_o = 1 / data_example[["output"]])
slacks(result2)
# Example 3.
# Range Adjusted Measure of Inefficiencies (RAM).
x <- c(2, 3, 6, 9, 5, 4, 10)
y <- c(2, 5, 7, 8, 3, 1, 7)
data_example <- data.frame(dmus = letters[1:7], x, y)
data_example <- make_deadata(data_example,
ni = 1,
no = 1)
range_i <- apply(data_example[["input"]], 1, max) -
apply(data_example[["input"]], 1, min)
range_o <- apply(data_example[["output"]], 1, max) -
apply(data_example[["output"]], 1, min)
w_range_i <- 1 / (range_i * (dim(data_example[["input"]])[1] +
dim(data_example[["output"]])[1]))
w_range_o <- 1 / (range_o * (dim(data_example[["input"]])[1] +
dim(data_example[["output"]])[1]))
result3 <- model_additive(data_example,
rts = "vrs",
weight_slack_i = w_range_i,
weight_slack_o = w_range_o)
slacks(result3)