bootstrap_basic {deaR} | R Documentation |
Bootstrapping DEA
Description
To bootstrap efficiency scores, deaR uses the algorithm proposed by Simar and Wilson (1998). For now, the function bootstrap_basic can only be used with basic DEA models.
Usage
bootstrap_basic(datadea,
orientation = c("io", "oo"),
rts = c("crs", "vrs", "nirs", "ndrs", "grs"),
L = 1,
U = 1,
B = 2000,
h = NULL,
alpha = 0.05)
Arguments
datadea |
A |
orientation |
A string, equal to "io" (input oriented) or "oo" (output oriented). |
rts |
A string, determining the type of returns to scale, equal to "crs" (constant), "vrs" (variable), "nirs" (non-increasing), "ndrs" (non-decreasing) or "grs" (generalized). |
L |
Lower bound for the generalized returns to scale (grs). |
U |
Upper bound for the generalized returns to scale (grs). |
B |
Number of bootstrap iterations. |
h |
Bandwidth of smoothing window. By default |
alpha |
Between 0 and 1 (for confidence intervals). |
Author(s)
Vicente Coll-Serrano (vicente.coll@uv.es). Quantitative Methods for Measuring Culture (MC2). Applied Economics.
Vicente Bolós (vicente.bolos@uv.es). Department of Business Mathematics
Rafael Benítez (rafael.suarez@uv.es). Department of Business Mathematics
University of Valencia (Spain)
References
Behr, A. (2015). Production and Efficiency Analysis with R. Springer.
Bogetoft, P.; Otto, L. (2010). Benchmarking with DEA, SFA, and R. Springer.
Daraio, C.; Simar, L. (2007). Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications. New York: Springer.
Färe, R.; Grosskopf, S.; Kokkenlenberg, E. (1989). "Measuring Plant Capacity, Utilization and Technical Change: A Nonparametric Approach". International Economic Review, 30(3), 655-666.
Löthgren, M.; Tambour, M. (1999). "Bootstrapping the Data Envelopment Analysis Malmquist Productivity Index". Applied Economics, 31, 417-425.
Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
Simar, L.; Wilson, P.W. (1998). "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models". Management Science, 44(1), 49-61.
Simar, L.; Wilson, P.W. (1999). "Estimating and Bootstrapping Malmquist Indices". European Journal of Operational Research, 115, 459-471.
Simar, L.; Wilson, P.W. (2008). Statistical Inference in Nonparametric Frontier Models: Recent Developments and Perspective. In H.O. Fried; C.A. Knox Lovell and S.S. Schmidt (eds.) The Measurement of Productive Efficiency and Productivity Growth. New York: Oxford University Press. doi:10.1093/acprof:oso/9780195183528.001.0001
Examples
# To replicate the results in Simar y Wilson (1998, p. 58) you have to
# set B=2000 (in the example B = 100 to save time)
data("Electric_plants")
data_example <- make_deadata(Electric_plants,
ni = 3,
no = 1)
result <- bootstrap_basic(datadea = data_example,
orientation = "io",
rts = "vrs",
B = 100)
result$score_bc
result$CI