depth.zonoid {ddalpha} | R Documentation |
Calculate Zonoid Depth
Description
Calculates the zonoid depth of points w.r.t. a multivariate data set.
Usage
depth.zonoid(x, data, seed = 0)
Arguments
x |
Matrix of objects (numerical vector as one object) whose depth is to be calculated; each row contains a |
data |
Matrix of data where each row contains a |
seed |
the random seed. The default value |
Details
Calculates zonoid depth (Koshevoy and Mosler, 1997; Mosler, 2002) exactly based on the algorithm of Dyckerhoff, Koshevoy and Mosler (1996), implemented in C++ (and provided) by Rainer Dyckerhoff.
Value
Numerical vector of depths, one for each row in x
; or one depth value if x
is a numerical vector.
References
Dyckerhoff, R., Koshevoy, G., and Mosler, K. (1996). Zonoid data depth: theory and computation. In: Prat A. (ed), COMPSTAT 1996. Proceedings in computational statistics, Physica-Verlag (Heidelberg), 235–240.
Koshevoy, G. and Mosler, K. (1997). Zonoid trimming for multivariate distributions Annals of Statistics 25 1998–2017.
Mosler, K. (2002). Multivariate dispersion, central regions and depth: the lift zonoid approach Springer (New York).
See Also
depth.halfspace
for calculation of the Tukey depth.
depth.Mahalanobis
for calculation of Mahalanobis depth.
depth.projection
for calculation of projection depth.
depth.simplicial
for calculation of simplicial depth.
depth.simplicialVolume
for calculation of simplicial volume depth.
depth.spatial
for calculation of spatial depth.
depth.potential
for calculation of data potential.
Examples
# 5-dimensional normal distribution
data <- mvrnorm(1000, rep(0, 5),
matrix(c(1, 0, 0, 0, 0,
0, 2, 0, 0, 0,
0, 0, 3, 0, 0,
0, 0, 0, 2, 0,
0, 0, 0, 0, 1),
nrow = 5))
x <- mvrnorm(10, rep(1, 5),
matrix(c(1, 0, 0, 0, 0,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 1),
nrow = 5))
depths <- depth.zonoid(x, data)
cat("Depths: ", depths, "\n")