depth.space.spatial {ddalpha} | R Documentation |
Calculate Depth Space using Spatial Depth
Description
Calculates the representation of the training classes in depth space using spatial depth.
Usage
depth.space.spatial(data, cardinalities, mah.estimate = "moment", mah.parMcd = 0.75)
Arguments
data |
Matrix containing training sample where each row is a |
cardinalities |
Numerical vector of cardinalities of each class in |
mah.estimate |
is a character string specifying which estimates to use when calculating sample covariance matrix; can be |
mah.parMcd |
is the value of the argument |
Details
The depth representation is calculated in the same way as in depth.spatial
, see 'References' for more information and details.
Value
Matrix of objects, each object (row) is represented via its depths (columns) w.r.t. each of the classes of the training sample; order of the classes in columns corresponds to the one in the argument cardinalities
.
References
Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. Journal of the Americal Statistical Association 91 862–872.
Koltchinskii, V.I. (1997). M-estimation, convexity and quantiles. The Annals of Statistics 25 435–477.
Serfling, R. (2006). Depth functions in nonparametric multivariate inference. In: Liu, R., Serfling, R., Souvaine, D. (eds.), Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications, American Mathematical Society, 1–16.
Vardi, Y. and Zhang, C.H. (2000). The multivariate L1-median and associated data depth. Proceedings of the National Academy of Sciences, U.S.A. 97 1423–1426.
See Also
ddalpha.train
and ddalpha.classify
for application, depth.spatial
for calculation of spatial depth.
Examples
# Generate a bivariate normal location-shift classification task
# containing 20 training objects
class1 <- mvrnorm(10, c(0,0),
matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
class2 <- mvrnorm(10, c(2,2),
matrix(c(1,1,1,4), nrow = 2, ncol = 2, byrow = TRUE))
data <- rbind(class1, class2)
# Get depth space using spatial depth
depth.space.spatial(data, c(10, 10))
data <- getdata("hemophilia")
cardinalities = c(sum(data$gr == "normal"), sum(data$gr == "carrier"))
depth.space.spatial(data[,1:2], cardinalities)