ddalphaf.classify {ddalpha} | R Documentation |
Classify using Functional DD-Classifier
Description
Classifies data using the functional DD-classifier.
Usage
ddalphaf.classify(ddalphaf, objectsf, subset, ...)
## S3 method for class 'ddalphaf'
predict(object, objectsf, subset, ...)
Arguments
ddalphaf , object |
Functional DD-classifier (obtained by |
objectsf |
list containing lists (functions) of two vectors of equal length, named "args" and "vals": arguments sorted in ascending order and corresponding them values respectively |
subset |
an optional vector specifying a subset of observations to be classified. |
... |
additional parameters, passed to the classifier, selected with parameter |
Value
List containing class labels.
References
Mosler, K. and Mozharovskyi, P. (2017). Fast DD-classification of functional data. Statistical Papers 58 1055–1089.
Mozharovskyi, P. (2015). Contributions to Depth-based Classification and Computation of the Tukey Depth. Verlag Dr. Kovac (Hamburg).
See Also
ddalphaf.train
to train the functional DD\alpha
-classifier.
Examples
## Not run:
## load the Growth dataset
dataf = dataf.growth()
learn = c(head(dataf$dataf, 49), tail(dataf$dataf, 34))
labels= c(head(dataf$labels, 49), tail(dataf$labels, 34))
test = tail(head(dataf$dataf, 59), 10) # elements 50:59. 5 girls, 5 boys
c = ddalphaf.train (learn, labels, classifier.type = "ddalpha")
classified = ddalphaf.classify(c, test)
print(unlist(classified))
## End(Not run)