dataf.sim.2.CFF07 {ddalpha} | R Documentation |
Model 2 from Cuevas et al. (2007)
Description
Model 2 from Cuevas et al. (2007)
Processes:
X(t) = m_0(t) + e(t), m_0(t) = 30*(1-t)*t^2 + 0.5*abs(sin(20*pi*t))
Y(t) = an 8-knot spline approximation of X
e(t): Gaussian with mean = 0, cov(X(s), X(t)) = 0.2*exp(-abs(s - t)/0.3)
the processes are discretized at numDiscrets
equally distant points on [0, 1].
Usage
dataf.sim.2.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51, plot = FALSE)
Arguments
numTrain |
number of objects in the training sample |
numTest |
number of objects in the test sample |
numDiscrets |
number of points for each object |
plot |
if TRUE the training sample is plotted |
Format
A data strusture containing $learn
and $test
functional data.
The functional data are given as data structures.
dataf
-
The functional data as a list of objects. Each object is characterized by two coordinates.
args
a numeric vector
vals
a numeric vector
labels
The classes of the objects: 0 for X(t), 1 for Y(t)
Source
Cuevas, A., Febrero, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22 481-496.
See Also
dataf.*
for other functional data sets
plot.functional
for building plots of functional data
Examples
## load the dataset
dataf = dataf.sim.2.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51)
learn = dataf$learn
test = dataf$test
## view the classes
unique(learn$labels)
## access the 5th point of the 2nd object
learn$dataf[[2]]$args[5]
learn$dataf[[2]]$vals[5]
## Not run:
## plot the data
plot(learn)
plot(test)
## or
dataf = dataf.sim.2.CFF07(numTrain = 100, numTest = 50, numDiscrets = 51, plot = TRUE)
## End(Not run)