compclassf.train {ddalpha} | R Documentation |
Functional Componentwise Classifier
Description
Trains the functional componentwise classifier
Usage
compclassf.train (dataf, labels, subset,
to.equalize = TRUE,
to.reduce = TRUE,
classifier.type = c("ddalpha", "maxdepth", "knnaff", "lda", "qda"),
...)
Arguments
dataf |
list containing lists (functions) of two vectors of equal length, named "args" and "vals": arguments sorted in ascending order and corresponding them values respectively |
labels |
list of output labels of the functional observations |
subset |
an optional vector specifying a subset of observations to be used in training the classifier. |
to.equalize |
Adjust the data to have equal (the largest) argument interval. |
to.reduce |
If the data spans a subspace only, project on it (by PCA). |
classifier.type |
the classifier which is used on the transformed space. The default value is 'ddalpha'. |
... |
additional parameters, passed to the classifier, selected with parameter |
Details
The finite-dimensional space is directly constructed from the observed values. Delaigle, Hall and Bathia (2012) consider (almost) all sets of discretization points that have a given cardinality.
The usual classifiers are then trained on the constructed finite-dimensional space.
Value
Trained functional componentwise classifier
References
Delaigle, A., Hall, P., and Bathia, N. (2012). Componentwise classification and clustering of functional data. Biometrika 99 299–313.
See Also
compclassf.classify
for classification using functional componentwise classifier,
ddalphaf.train
to train the functional DD-classifier,
dataf.*
for functional data sets included in the package.
Examples
## Not run:
## load the Growth dataset
dataf = dataf.growth()
learn = c(head(dataf$dataf, 49), tail(dataf$dataf, 34))
labels =c(head(dataf$labels, 49), tail(dataf$labels, 34))
test = tail(head(dataf$dataf, 59), 10) # elements 50:59. 5 girls, 5 boys
c = compclassf.train (learn, labels, classifier.type = "ddalpha")
classified = compclassf.classify(c, test)
print(unlist(classified))
## End(Not run)