FKS {ddalpha} | R Documentation |
Fast Kernel Smoothing
Description
Produces a kernel smoothed version of a function based on the vectors given in the input. Bandwidth is selected using cross-validation.
Usage
FKS(dataf, Tout, kernel = c("uniform", "triangular", "Epanechnikov",
"biweight", "triweight", "Gaussian"), m = 51, K = 20)
Arguments
dataf |
A set of functional data given by a |
Tout |
vector of values in the domain of the functions at which the resulting smoothed function is evaluated |
kernel |
Kernel used for smoothing. Admissible values are |
m |
Number of points in the grid for choosing the cross-validated bandwidth. |
K |
Performs |
Details
A vector of the same length as Tout
corresponding to the values of the
function produced using kernel smoothing, is provided. Bandwidth is selected using the
K
-fold cross-validation of randomly shuffled input values.
Value
A dataf
object corresponding to Tout
of smoothed functional values.
Author(s)
Stanislav Nagy, nagy@karlin.mff.cuni.cz
Examples
d = 10
T = sort(runif(d))
X = T^2+ rnorm(d,sd=.1)
Tout = seq(0,1,length=101)
plot(T,X)
dataf = list(list(args=T,vals=X))
data.sm = FKS(dataf,Tout,kernel="Epan")
lines(data.sm[[1]]$args,data.sm[[1]]$vals,col=2)
datafs = structure(list(dataf=dataf,labels=1:length(dataf)),class="functional")
plot(datafs)
points(T,X)
data.sms = structure(list(dataf=data.sm,labels=1:length(data.sm)),class="functional")
plot(data.sms)
n = 6
dataf = list()
for(i in 1:n) dataf[[i]] = list(args = T<-sort(runif(d)), vals = T^2 + rnorm(d,sd=.1))
data.sm = FKS(dataf,Tout,kernel="triweight")
data.sms = structure(list(dataf=data.sm,labels=1:length(data.sm)),class="functional")
plot(data.sms)