| util_dist_selection {dataquieR} | R Documentation |
Utility function to characterize study variables
Description
This function summarizes some properties of measurement variables.
Usage
util_dist_selection(study_data, val_lab = NULL)
Arguments
study_data |
study data, pre-processed with |
val_lab |
matching metadata column containing the |
Value
data frame with one row for each variable in the study data and the
following columns:
Variables contains the names of the variables
IsInteger contains a check whether the variable contains integer values
only (variables coded as factor will be converted to integers)
IsMultCat contains a check for variables with integer or string values
whether there are more than two categories
NCategory contains the number of distinct values for variables with
values coded as integers or strings (excluding NA and
empty entries)
AnyNegative contains a check whether the variable contains any negative
values
NDistinct contains the number of distinct values
PropZeroes reports the proportion of zeroes
See Also
Other metadata_management:
CAN_THIS_BE_REMOVED_util_combine_missing_lists(),
util_find_free_missing_code(),
util_find_var_by_meta(),
util_get_var_att_names_of_level(),
util_get_vars_in_segment(),
util_looks_like_missing(),
util_no_value_labels(),
util_validate_known_meta(),
util_validate_missing_lists()