filter-data {datamods} | R Documentation |
Shiny module to interactively filter a data.frame
Description
Module generate inputs to filter data.frame
according column's type.
Code to reproduce the filter is returned as an expression with filtered data.
Usage
filter_data_ui(id, show_nrow = TRUE, max_height = NULL)
filter_data_server(
id,
data = reactive(NULL),
vars = reactive(NULL),
name = reactive("data"),
defaults = reactive(NULL),
drop_ids = getOption("datamods.filter.drop_ids", default = TRUE),
widget_char = c("virtualSelect", "select", "picker"),
widget_num = c("slider", "range"),
widget_date = c("slider", "range"),
label_na = "NA",
value_na = TRUE
)
Arguments
id |
Module id. See |
show_nrow |
Show number of filtered rows and total. |
max_height |
Maximum height for filters panel, useful if you have many variables to filter and limited space. |
data |
|
vars |
|
name |
|
defaults |
|
drop_ids |
Drop columns containing more than 90% of unique values, or than 50 distinct values.
Use |
widget_char |
Widget to use for |
widget_num |
Widget to use for |
widget_date |
Widget to use for |
label_na |
Label for missing value widget. |
value_na |
Default value for all NA's filters. |
Value
UI: HTML tags that can be included in shiny's UI
Server: a
list
with four slots:-
filtered: a
reactive
function returning the data filtered. -
code: a
reactive
function returning the dplyr pipeline to filter data. -
expr: a
reactive
function returning an expression to filter data. -
values: a
reactive
function returning a named list of variables and filter values.
-
Examples
library(shiny)
library(shinyWidgets)
library(datamods)
library(MASS)
# Add some NAs to mpg
mtcars_na <- mtcars
mtcars_na[] <- lapply(
X = mtcars_na,
FUN = function(x) {
x[sample.int(n = length(x), size = sample(5:10, 1))] <- NA
x
}
)
datetime <- data.frame(
date = seq(Sys.Date(), by = "day", length.out = 300),
datetime = seq(Sys.time(), by = "hour", length.out = 300),
num = sample.int(1e5, 300)
)
one_column_numeric <- data.frame(
var1 = rnorm(100)
)
ui <- fluidPage(
tags$h2("Filter data.frame"),
actionButton("saveFilterButton","Save Filter Values"),
actionButton("loadFilterButton","Load Filter Values"),
radioButtons(
inputId = "dataset",
label = "Data:",
choices = c(
"iris",
"mtcars",
"mtcars_na",
"Cars93",
"datetime",
"one_column_numeric"
),
inline = TRUE
),
fluidRow(
column(
width = 3,
filter_data_ui("filtering", max_height = "500px")
),
column(
width = 9,
progressBar(
id = "pbar", value = 100,
total = 100, display_pct = TRUE
),
reactable::reactableOutput(outputId = "table"),
tags$b("Code dplyr:"),
verbatimTextOutput(outputId = "code_dplyr"),
tags$b("Expression:"),
verbatimTextOutput(outputId = "code"),
tags$b("Filtered data:"),
verbatimTextOutput(outputId = "res_str")
)
)
)
server <- function(input, output, session) {
savedFilterValues <- reactiveVal()
data <- reactive({
get(input$dataset)
})
vars <- reactive({
if (identical(input$dataset, "mtcars")) {
setNames(as.list(names(mtcars)[1:5]), c(
"Miles/(US) gallon",
"Number of cylinders",
"Displacement (cu.in.)",
"Gross horsepower",
"Rear axle ratio"
))
} else {
NULL
}
})
observeEvent(input$saveFilterButton,{
savedFilterValues <<- res_filter$values()
},ignoreInit = T)
defaults <- reactive({
input$loadFilterButton
savedFilterValues
})
res_filter <- filter_data_server(
id = "filtering",
data = data,
name = reactive(input$dataset),
vars = vars,
defaults = defaults,
widget_num = "slider",
widget_date = "slider",
label_na = "Missing"
)
observeEvent(res_filter$filtered(), {
updateProgressBar(
session = session, id = "pbar",
value = nrow(res_filter$filtered()), total = nrow(data())
)
})
output$table <- reactable::renderReactable({
reactable::reactable(res_filter$filtered())
})
output$code_dplyr <- renderPrint({
res_filter$code()
})
output$code <- renderPrint({
res_filter$expr()
})
output$res_str <- renderPrint({
str(res_filter$filtered())
})
}
if (interactive())
shinyApp(ui, server)