gl.dist.pop {dartR} | R Documentation |
Calculates a distance matrix for populations with SNP genotypes in a genlight object
Description
This script calculates various distances between populations based on allele frequencies (SNP genotypes) or frequency of presences in presence-absence data (Euclidean and Fixed-diff distances only).
Usage
gl.dist.pop(
x,
method = "euclidean",
plot.out = TRUE,
scale = FALSE,
output = "dist",
plot_theme = theme_dartR(),
plot_colors = two_colors,
save2tmp = FALSE,
verbose = NULL
)
Arguments
x |
Name of the genlight containing the SNP genotypes [required]. |
method |
Specify distance measure [default euclidean]. |
plot.out |
If TRUE, display a histogram of the genetic distances, and a whisker plot [default TRUE]. |
scale |
If TRUE and method='Euclidean', the distance will be scaled to fall in the range [0,1] [default FALSE]. |
output |
Specify the format and class of the object to be returned, dist for a object of class dist, matrix for an object of class matrix [default "dist"]. |
plot_theme |
User specified theme [default theme_dartR()]. |
plot_colors |
Vector with two color names for the borders and fill [default two_colors]. |
save2tmp |
If TRUE, saves any ggplots and listings to the session temporary directory (tempdir) [default FALSE]. |
verbose |
Verbosity: 0, silent or fatal errors; 1, begin and end; 2, progress log ; 3, progress and results summary; 5, full report [default 2 or as specified using gl.set.verbosity]. |
Details
The distance measure can be one of 'euclidean', 'fixed-diff', 'reynolds', 'nei' and 'chord'. Refer to the documentation of functions described in the the dartR Distance Analysis tutorial for algorithms and definitions.
Value
An object of class 'dist' giving distances between populations
Author(s)
author(s): Arthur Georges. Custodian: Arthur Georges – Post to https://groups.google.com/d/forum/dartr
Examples
## Not run:
# SNP genotypes
D <- gl.dist.pop(possums.gl[1:90,1:100], method='euclidean')
D <- gl.dist.pop(possums.gl[1:90,1:100], method='euclidean',scale=TRUE)
#D <- gl.dist.pop(possums.gl, method='nei')
#D <- gl.dist.pop(possums.gl, method='reynolds')
#D <- gl.dist.pop(possums.gl, method='chord')
#D <- gl.dist.pop(possums.gl, method='fixed-diff')
#Presence-Absence data [only 10 individuals due to speed]
D <- gl.dist.pop(testset.gs[1:10,], method='euclidean')
## End(Not run)
res <- gl.dist.pop(platypus.gl)