| dens {cylcop} | R Documentation |
Density, Distribution, Random Number Generation and Quantiles of Kernel Density Estimates
Description
Calculate the density (ddens()), the distribution (pdens()),
the quantiles (qdens()) and generate random
samples (rdens()) of a kernel density estimate as returned by
fit_angle() or fit_steplength().
Usage
rdens(n, density)
ddens(x, density)
pdens(x, density)
qdens(p, density)
Arguments
n |
integer value, the number of random samples to be
generated with |
density |
a ' |
x |
numeric vector giving the points where the density or distribution function is evaluated. |
p |
numeric vector giving the probabilities where the quantile function is evaluated. |
Value
ddens() and pdens() give a vector of length length(x) containing
the density or distribution function at the corresponding values of x.
qdens() gives a vector of length length(p) containing
the quantiles at the corresponding values of p. The function rdens()
generates a vector of length n containing the random samples.
See Also
fit_angle(), fit_steplength(),
fit_steplength().
Examples
set.seed(123)
steps <- rweibull(10, shape=3)
dens <- fit_steplength(x = steps, parametric = FALSE)
ddens(c(0.1,0.3), dens)
pdens(c(0.1,0.3), dens)
qdens(c(0.1,0.3), dens)
rdens(4, dens)
angles <- full2half_circ(
circular::rvonmises(10, mu = circular::circular(0), kappa = 2)
)
dens <- fit_angle(theta = angles, parametric = FALSE)
ddens(c(0.1,0.3), dens)
pdens(c(0.1,0.3), dens)
qdens(c(0.1,0.3), dens)
rdens(4, dens)