vkgmss.sd.estim {cvmgof} | R Documentation |
Kernel estimation of the standard deviation function
Description
This function computes the kernel (Nadaraya-Watson) estimation of the standard deviation function.
Usage
vkgmss.sd.estim(x, data.X, data.Y, bandwidth,
kernel.function = kernel.function.epan)
Arguments
x |
a numeric vector. |
data.X |
a numeric data vector used to obtain the kernel estimator of the standard deviation function. |
data.Y |
a numeric data vector used to obtain the kernel estimator of the standard deviation function. |
bandwidth |
bandwidth used to obtain the kernel estimator of the standard deviation function. |
kernel.function |
kernel function used to obtain the kernel estimator of the standard deviation function. Default option is "kernel.function.epan" which corresponds to the Epanechnikov kernel function. |
Details
Inappropriate bandwidth or x choices can produce "NaN" values in function estimates.
Author(s)
Romain Azais, Sandie Ferrigno and Marie-Jose Martinez
References
I. Van Keilegom, W. Gonzalez Manteiga, and C. Sanchez Sellero. Goodness-of-fit tests in parametric regression based on the estimation of the error distribution. Test, 17, 401:415, 2008.
R. Azais, S. Ferrigno and M-J Martinez. cvmgof: An R package for Cramer-von Mises goodness-of-fit tests in regression models. Submitted. January 2021.hal-03101612
Examples
# Uncomment the following code block
#
# set.seed(1)
#
# # Data simulation
# n = 25 # Dataset size
# data.X = runif(n,min=0,max=5) # X
# data.Y = 0.2*data.X^2-data.X+2+rnorm(n,mean=0,sd=0.3) # Y
#
# ########################################################################
#
# # Estimation of residuals standard deviation
#
# bandwidth = 0.75 # Here, the bandwidth is arbitrarily fixed
#
# xgrid = seq(0,5,by=0.1)
# sd = vkgmss.sd.estim(xgrid,data.X,data.Y,bandwidth)
#
# plot(xgrid,sd , type='l',xlab='X',ylab='SD(X)')
# abline(h=0.3)