cor.ct {ctmva} | R Documentation |
Continuous-time correlation or cross-correlation matrix
Description
Computes the correlation matrix of a continuous-time multivariate
data set represented as an fd
object; or the cross-correlation
matrix of two such data sets.
Usage
cor.ct(fdobj1, fdobj2 = fdobj1, common_trend = FALSE)
Arguments
fdobj1 |
continuous-time multivariate data set of class |
fdobj2 |
an optional second data set |
common_trend |
logical: centering wrt mean function if |
Value
A matrix of (cross-) correlations
Author(s)
Biplab Paul <paul.biplab497@gmail.com> and Philip Tzvi Reiss <reiss@stat.haifa.ac.il>
See Also
center.fd
, for centering of "fd"
objects; inprod.cent
Examples
## Not run:
# Canadian temperature data
require(fda)
require(corrplot)
data(CanadianWeather)
daybasis <- create.fourier.basis(c(0,365), nbasis=55)
tempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"], daybasis)$fd
## The following yields a matrix of correlations that are all near 1:
rawcor <- cor.ct(tempfd)
corrplot(rawcor, method = 'square', type = 'lower', tl.col="black", tl.cex = 0.6)
## This occurs due to a strong seasonal trend that is common to all stations
## Removing this common trend leads to a more interesting result:
dtcor <- cor.ct(tempfd, common_trend = TRUE)
ord <- corrMatOrder(dtcor)
dtcord <- dtcor[ord,ord]
corrplot(dtcord, method = 'square', type = 'lower', tl.col="black", tl.cex = 0.6)
## End(Not run)
[Package ctmva version 1.4.0 Index]