normFit {crmn} | R Documentation |
Fit a normalization model
Description
Fit the parameters for normalization of a metabolomics data set.
Usage
normFit(
object,
method,
one = "Succinate_d4",
factors = NULL,
lg = TRUE,
fitfunc = lm,
formula = TRUE,
...
)
Arguments
object |
an |
method |
chosen normalization method |
one |
single internal standard to use for normalization |
factors |
column names in the pheno data slot describing the biological factors. Or a design matrix directly. |
lg |
logical indicating that the data should be log transformed |
fitfunc |
the function that creates the model fit for
normalization, must use the same interfaces as |
formula |
if fitfunc has formula interface or not |
... |
passed on to |
Details
Normalization is first done by fitting a model and then applying
that model either to new data or the same data using
normPred
. Five different methods are implemented.
- t1
divide by row-means of the
L_2
scaled internal standards- one
divide by value of a single, user defined, internal standard
- totL2
divide by the square of sums of the full dataset
- nomis
See Sysi-Aho et al.
- crmn
See Redestig et al.
Value
a normalization model
Author(s)
Henning Redestig
References
Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L. & Oresic, M. Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 2007, 8, 93
Redestig, H.; Fukushima, A.; Stenlund, H.; Moritz, T.; Arita, M.; Saito, K. & Kusano, M. Compensation for systematic cross-contribution improves normalization of mass spectrometry based metabolomics data Anal Chem, 2009, 81, 7974-7980
See Also
normPred
, standards
, model.matrix
Examples
data(mix)
nfit <- normFit(mix, "crmn", factors="type", ncomp=3)
slplot(sFit(nfit)$fit$pc, scol=as.integer(mix$runorder))
## same thing
Y <- exprs(mix)
G <- model.matrix(~-1+mix$type)
isIS <- fData(mix)$tag == 'IS'
nfit <- normFit(Y, "crmn", factors=G, ncomp=3, standards=isIS)
slplot(sFit(nfit)$fit$pc, scol=as.integer(mix$runorder))