CensoredStudentsT {crch} | R Documentation |
Create a Censored Student's T Distribution
Description
Class and methods for left-, right-, and interval-censored t distributions using the workflow from the distributions3 package.
Usage
CensoredStudentsT(df, location = 0, scale = 1, left = -Inf, right = Inf)
Arguments
df |
numeric. The degrees of freedom of the underlying uncensored
t distribution. Can be any positive number, with |
location |
numeric. The location parameter of the underlying uncensored
t distribution, typically written |
scale |
numeric. The scale parameter (standard deviation) of
the underlying uncensored t distribution,
typically written |
left |
numeric. The left censoring point. Can be any real number,
defaults to |
right |
numeric. The right censoring point. Can be any real number,
defaults to |
Details
The constructor function CensoredStudentsT
sets up a distribution
object, representing the censored t probability distribution by the
corresponding parameters: the degrees of freedom df
, the latent mean
location
= \mu
and latent scale parameter scale
= \sigma
(i.e., the parameters of the underlying uncensored t variable),
the left
censoring point (with -Inf
corresponding to uncensored),
and the right
censoring point (with Inf
corresponding to uncensored).
The censored t distribution has probability density function (PDF) f(x)
:
T((left - \mu)/\sigma) | if x \le left |
1 - T((right - \mu)/\sigma) | if x \ge right |
\tau((x - \mu)/\sigma)/\sigma | if left < x < right
|
where T
and \tau
are the cumulative distribution function
and probability density function of the standard t distribution with
df
degrees of freedom, respectively.
All parameters can also be vectors, so that it is possible to define a vector of censored t distributions with potentially different parameters. All parameters need to have the same length or must be scalars (i.e., of length 1) which are then recycled to the length of the other parameters.
For the CensoredStudentsT
distribution objects there is a wide range
of standard methods available to the generics provided in the distributions3
package: pdf
and log_pdf
for the (log-)density (PDF), cdf
for the probability
from the cumulative distribution function (CDF), quantile
for quantiles,
random
for simulating random variables,
crps
for the continuous ranked probability score
(CRPS), and support
for the support interval
(minimum and maximum). Internally, these methods rely on the usual d/p/q/r
functions provided for the censored t distributions in the crch
package, see dct
, and the crps_ct
function from the scoringRules package.
The methods is_discrete
and is_continuous
can be used to query whether the distributions are discrete on the entire support
(always FALSE
) or continuous on the entire support (only TRUE
if
there is no censoring, i.e., if both left
and right
are infinite).
See the examples below for an illustration of the workflow for the class and methods.
Value
A CensoredStudentsT
distribution object.
See Also
dct
, StudentsT
, TruncatedStudentsT
,
CensoredNormal
, CensoredLogistic
Examples
## package and random seed
library("distributions3")
set.seed(6020)
## three censored t distributions:
## - uncensored standard t with 5 degrees of freedom
## - left-censored at zero with 5 df, latent location = 1 and scale = 1
## - interval-censored in [0, 5] with 5 df, latent location = 2 and scale = 2
X <- CensoredStudentsT(
df = c( 5, 5, 5),
location = c( 0, 1, 2),
scale = c( 1, 1, 2),
left = c(-Inf, 0, 0),
right = c( Inf, Inf, 5)
)
X
## compute mean of the censored distribution
mean(X)
## higher moments (variance, skewness, kurtosis) are not implemented yet
## support interval (minimum and maximum)
support(X)
## simulate random variables
random(X, 5)
## histograms of 1,000 simulated observations
x <- random(X, 1000)
hist(x[1, ], main = "uncensored")
hist(x[2, ], main = "left-censored at zero")
hist(x[3, ], main = "interval-censored in [0, 5]")
## probability density function (PDF) and log-density (or log-likelihood)
x <- c(0, 0, 1)
pdf(X, x)
pdf(X, x, log = TRUE)
log_pdf(X, x)
## cumulative distribution function (CDF)
cdf(X, x)
## quantiles
quantile(X, 0.5)
## cdf() and quantile() are inverses (except at censoring points)
cdf(X, quantile(X, 0.5))
quantile(X, cdf(X, 1))
## all methods above can either be applied elementwise or for
## all combinations of X and x, if length(X) = length(x),
## also the result can be assured to be a matrix via drop = FALSE
p <- c(0.05, 0.5, 0.95)
quantile(X, p, elementwise = FALSE)
quantile(X, p, elementwise = TRUE)
quantile(X, p, elementwise = TRUE, drop = FALSE)
## compare theoretical and empirical mean from 1,000 simulated observations
cbind(
"theoretical" = mean(X),
"empirical" = rowMeans(random(X, 1000))
)
## evaluate continuous ranked probability score (CRPS) using scoringRules
library("scoringRules")
crps(X, x)