Ahmad2017 {covTestR} | R Documentation |
Tests for Homogeneity of Covariance Matrices
Description
Performs tests for homogeneity of 2 and k covariance matrices.
Usage
Ahmad2017(x, ...)
BoxesM(x, ...)
Chaipitak2013(x, ...)
Ishii2016(x, ...)
Schott2001(x, ...)
Schott2007(x, ...)
Srivastava2007(x, ...)
Srivastava2014(x, ...)
SrivastavaYanagihara2010(x, ...)
Arguments
x |
data as a list of matrices |
... |
other options passed to covTest method |
Value
A list with class "htest" containing the following components:
statistic | the value of homogeneity of covariance test statistic |
parameter | the degrees of freedom for the chi-squared statistic |
p.value | the p=value for the test |
estimate | the estimated covariances if less than 5 dimensions |
null.value | the specified hypothesized value of the covariance difference |
alternative | a character string describing the alternative hyposthesis |
method | a character string indicating what type of homogeneity of covariance test was performed |
data.name | a character string giving the names of the data |
References
Ahmad, R. (2017). Location-invariant test of homogeneity of large-dimensional covariance matrices. Journal of Statistical Theory and Practice, 11(4):731-745. 10.1080/15598608.2017.1308895
Chaipitak, S. and Chongcharoen, S. (2013). A test for testing the equality of two covariance matrices for high-dimensional data. Journal of Applied Sciences, 13(2):270-277. 10.3923/jas.2013.270.277
Ishii, A., Yata, K., and Aoshima, M. (2016). Asymptotic properties of the first pricipal component and equality tests of covariance matrices in high-dimesion, low-sample-size context. Journal of Statistical Planning and Inference, 170:186-199. 10.1016/j.jspi.2015.10.007
Schott, J (2001). Some Tests for the Equality of Covariance Matrices. Journal of Statistical Planniing and Inference. 94(1), 25-36. 10.1016/S0378-3758(00)00209-3
Schott, J. (2007). A test for the equality of covariance matrices when the dimension is large relative to the sample sizes. Computational Statistics & Data Analysis, 51(12):6535-6542. 10.1016/j.csda.2007.03.004
Srivastava, M. S. (2007). Testing the equality of two covariance matrices and independence of two sub-vectors with fewer observations than the dimension. InInternational Conference on Advances in InterdisciplinaryStistics and Combinatorics, University of North Carolina at Greensboro, NC, USA.
Srivastava, M., Yanagihara, H., and Kubokawa T. (2014). Tests for covariance matrices in high dimension with less sample size. Journal of Multivariate Analysis, 130:289-309. 10.1016/j.jmva.2014.06.003
Srivastava, M. and Yanagihara, H. (2010). Testing the equality of several covariance matrices with fewer observation that the dimension. Journal of Multivariate Analysis, 101(6):1319-1329. 10.1016/j.jmva.2009.12.010
See Also
Other Testing for Homogeneity of Covariance Matrices: homogeneityCovariances
Examples
irisSpecies <- unique(iris$Species)
iris_ls <- lapply(irisSpecies,
function(x){as.matrix(iris[iris$Species == x, 1:4])}
)
names(iris_ls) <- irisSpecies
Ahmad2017(iris_ls)