rvTransformer {countTransformers} | R Documentation |
Root and VOOM Transformation
Description
Root and vOOM transformation.
Usage
rvTransformer(mat, lib.size = NULL, low = 0.001, upp = 1000)
Arguments
mat |
G x n data matrix, where G is the number of genes and n is the number of subjects |
lib.size |
By default, |
low |
lower bound for the model parameter |
upp |
upper bound for the model parameter |
Details
Denote as the expression level of the
-th gene for
the
-th subject.
We perform the root transformation
, where
and
is the column sum for the
-th column
of the matrix
mat
. The optimal value for the parameter is to minimize the squared
difference between the sample mean and the sample median of the pooled data
,
,
,
where
is the number of genes and
is the number of subjects.
Value
A list with 3 elements:
res.eta |
An object returned by |
eta |
model parameter |
mat2 |
transformed data matrix having the same dimension as |
Author(s)
Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu
References
Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5
Examples
library(Biobase)
data(es)
print(es)
# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")
res = rvTransformer(mat = ex)
# estimated model parameter
print(res$eta)
# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")